
  

IT101
Anatomy of a Java Program



  

Java Comments

● Include comments in your programs in order to 
make them more readable/understandable.

● Block comment syntax:

/* 
  Multi-line
  Comment
 */        

● One line comment syntax: // …

● Commented text is ignored by the compiler.

● Style: Include a prologue section at the top of 
every class/program. The prologue section 
consists of:

 filename

 programmer's name

 program description

 version



  

Class and Package

● All Java programs must be enclosed in a class. 
Think of a class as the name of the 
program.

● The name of the Java program's file must 
match the name of the Java program's 
class (except that the filename has a .java 
extension added to it).

● Proper style dictates that class names start with 
an uppercase first letter.

● Since Java is case-sensitive, that means the 
filename should also start with an 
uppercase first letter. Case-sensitive means 
that the Java compiler does distinguish 
between lowercase and uppercase letters.

● All classes in Java belong to some package.

● To create a package, put a “package” command 
at the top of a Java source file:

 package com.schoolnova.it101;

● Java uses the file system to manage packages, 
with each package stored in its own 
directory. 

● Package names are case-sensitive.

● You can create a hierarchy of packages by 
separating each package name with a 
period (see example above).



  

Main method

● Use “public class” access modifier prior to your class name. For example:

 public class Fibonacci

● Inside your class, you must include one or more methods.

● A method is a group of instructions that solves one task. Large programs require multiple methods 
because they solve multiple tasks. A Java method is equivalent to a JavaScript function.

● Use this main method signature for the method that starts your program:

 public static void main(String[] args)

● When a program starts, the JVM looks for the main method and begins execution with it.



  

System.out.println

● To generate output, use System.out.println().

● For example, to print the hello message, do this:

● System.out.println("Hello, world!");

● Note:

 Put the printed item inside the parentheses.

 Surround strings with quotes.

 Put a semicolon at the end of a statement.

● What's the significance of the ln in println?



  

Identifiers

● Identifier is the technical term for a name in a programming language

● Identifier examples:

 class name identifier: Fibonacci

 method name identifier: main

 variable name identifier: height

● Identifier naming rules:

 Must consist entirely of letters, digits, dollar signs ($), and/or underscore (_) characters.

 The first character must not be a digit.

 If these rules are broken, your program won't compile.

● Identifier naming conventions:

 All letters must be lowercase except the first letter in the second, third, etc. words. For exam-
ple: firstName, x, daysInMonth

 For class names, the first letter in every word (even the first word) must be uppercase. For ex-
ample: StudentRecord, WorkShiftSchedule

 Names must be descriptive.



  

Variables

● A variable can hold only one type of data. For example, an integer variable can hold only integers, a string 
variable can hold only strings, etc.

● How does the computer know which type of data a particular variable can hold?

 Before a variable is used, its type must be declared in a declaration statement.

● Declaration statement syntax:

 <type> <one or more variables separated by commas>;

● Example declarations:

 String firstName = Ethan;   // student's first name, initialized variable

 String lastName;    // student's last name

 int studentId;

 int gpa, age;

●

Trace this code:

int salary;
String bonusMessage;
salary = 50000;
bonusMessage = "Bonus = $" + (.02 * salary);
System.out.println(bonusMessage);



  

Reserved Words and Modifiers

● Java uses modifiers that specify the properties 
of the data, methods, and classes and how 
they can be used. 

 public

 private

 protected

 static

 final

 abstract

● A public variable, method or class can be 
accessed by other programs. 

● A private variable or method can be accessed 
by within the container class, but cannot be 
accessed by other classes/programs. 

● Reserved words or keywords are words that 
have a specific meaning to the compiler 
and cannot be used for other purposes in 
the program. 

● For example, when the compiler sees the word 
class, it understands that the word after 
class is the name for the class. 

● Other examples of reserved words are public, 
static, and void



  

Numeric Data Types

● Variables that hold whole numbers (e.g., 1000, -22) 
should normally be declared with one of these 
integer data types – int, long.

● Range of values that can be stored in an int variable: -2 
billion to +2 billion

● Range of values that can be stored in a long variable: 
-9x1018 to +9x1018

● Example integer variable declarations:

 int studentId;

 long satelliteDistanceTraveled;

● Recommendation: Use smaller types for variables that 
will never need to hold large values.

● The int data type is Java default for whole numbers.

● Variables that hold decimal numbers (e.g., -1234.5, 
3.1452) should be declared with one of these 
floating-point data types – float, double.

● Range of values that can be stored in a float variable: 
-3.4*1038 to +3.4*1038

● Range of values that can be stored in a double variable: 
-3.4*10308 to +3.4*10308

● The double type stores numbers using 64 bits whereas 
the float type stores numbers using only 32 bits. 
That means that double variables are better than 
float variables in terms of being able to store bigger 
numbers and numbers with more significant digits.

● The double data type is Java default for floating point 
numbers.

● Assigning an integer value into a floating-point variable works just fine. Note this example:
● double bankAccountBalance = 1000;

● On the other hand, assigning a floating-point value into an integer variable is like putting a large object into a small box. By 
default, that's illegal. For example, this generates a compilation error:
● int temperature = 26.7;

● This statement also generates a compilation error:
● int count = 0.0;



  

Arithmetic Operators

● Java's +, -, and * arithmetic operators perform addition, 
subtraction, and multiplication in the normal 
fashion.

● If you divide 7.0 by 2.0 on your calculator, you get 3.5, 
because 7.0 and 2.0 are doubles.

● In the following example: 5 / 4.0, 5 is an int and 4. is a 
double. This is an example of a mixed expression. 
A mixed expression is an expression that contains 
operands with different data types. Whenever 
there's a mixed expression, the JVM temporarily 
promotes the less-complex operand's type so that 
it matches the more-complex operand's type, and 
then the JVM applies the operator. In the 5 / 4. 
expression, the 5 gets promoted to a double and 
then floating-point division is performed. The 
expression evaluates to 1.25.

● The % operator (called the modulus operator) also 
performs "grade school" division and generates the 
remainder. For example: 7 % 2 !

● Use the increment operator (++)  operator to increment 
a variable by 1. Use the decrement operator (--) to 
decrement a variable by 1. Here's how they work:

 x++;   //  x = x + 1;

 x--;    //  x = x - 1;

● The compound assignment operators are: +=, -=, *=, /=, 
%=

● The variable is assigned an updated version of the 
variable's original value. Here's how they work:

 x += 3;     // x = x + 3;

 x -= 4;      // x = x - 4;



  

Homework

● Arithmetic operations in Java are very similar to JavaScript. 

● Create a program that calculates the approximate year of birth from the user's age input

 int age, dob;
 Scanner input = new Scanner(System.in);
 System.out.println(“What is your age?”);
 age = input.nextInt();
 // your year of birth calculation goes here
 System.out.println(“You were born around year “ + dob);

/*
Program shell

*/
package com.schoolnova.it101;
import java.util.Scanner;
public class DOBCalculator {
   public static void main(String[] args) { 

// your code goes here
   }
}

● NetBeans basic tutorial can be found here: https://docs.oracle.com/javase/tutorial/getStarted/cupojava/netbeans.html
● Go through steps 1-5 only.

https://docs.oracle.com/javase/tutorial/getStarted/cupojava/netbeans.html


  

If you are not using NetBeans

Helpful command line operations, if you are not using NetBeans:

1) Install JDK from http://www.oracle.com/technetwork/java/javase/downloads/index.html
2) set PATH=%PATH%;C:\Program Files\Java\<your JDK>\bin
3) cd to the directory where you saved Class12.java
4) javac com/schoolnova/it101/Class12.java
5) java -cp . com.schoolnova.it101.DOBCalculator


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

