
General Chemistry
Lesson 1-4

Electrons in atoms.

September 17 - October 28, 2017

Planetary (Rutherford) model of atoms says that the major part of atomic material is
concentrated in the atomic center (a nucleus), which consists of positive protons and neutral
neutrons. Negatively charged (and light) electrons are orbiting around positively charged
(and heavy) nucleus, and the negative charge of the electronic shell is compensated by the
positive charge of the nucleus, so the net atomic charge is zero. The number of electrons
(and, accordingly, of protons) is equal to the element’s atomic number (i.e. its position in
the Mendeleev’s table).

Figure 1: A planet orbiting the Sun (A), and an electron orbiting
atomic nucleus in the Rutherford model (B).

Rutherford explained
electron’s motion in atoms
in the same way planetary
motion in the Solar sys-
tem is explained. When
a planet is orbiting the
Sun (or another star), it
is being attracted by the
star, so it is constantly
falling to the star’s center.
However, as the planet
has some initial velocity,
the resulting trajectory is
not directed to the star.
The planet’s trajectory is
curved (due to the star’s
gravitation force), so the
resulting trajectory is a
circle (or an ellipse), so
the planet will never fall onto its star. The only force affecting the star is, therefore, a
gravity force, and the trajectory is curved (i.e. it is not directed to the star’s center) because
the planed, due to its inertia, resists to a sharp trajectory change. In other words, the circu-
lar shape of the orbit is a result of two opposite effects: attractive force between the planed
and the star, and the planet’s inertia.
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When we compare the Sun - Earth system and the electron - nucleus system, we see that
an electron is being attracted by the nucleus not due to its mass, but due to its charge (in
other words, the force acting between the nucleus and the electron is Coulomb force, not
gravity1). Everything else is the same: due to its inertia, electron resists to the Coulomb
force, and, instead of falling on the nucleus, orbits around it.

That is a brief summary of what we have learned by now. Does this information shed any
light on chemical properties of elements? I am not sure. Does this model explain physical
properties of atoms and their structure? No. In other words, although Rutherford model
and the discovery of the atomic nucleus composition were a major breakthrough, neither
chemists nor physicists were satisfied with them. Physicists criticized this model especially
strongly, because it lead to several paradoxes classical physics was unable to explain.

1 Paradoxes of the Rutherford model.

1.1 Why atoms are spherical?
As early experiments with X-rays demonstrated, atoms in crystalline materials have an

approximately spherical shape, and there is a serious reason to believe that observation is
general. Meanwhile, if we look at our Solar system, as well as other stellar systems, you
will see the orbit of each planet is planar, and all orbits are in the same plain. Similarly, if
electrons are moving in atoms as described at the fig 1b, why atoms are not discs?

Question 1. Take a look at the crystal of sodium chloride and try to explain
how can we conclude that sodium and chlorine atoms are not discs.

1.2 Why atoms have a specific size?
We know that different orbits are allowed for a planed orbiting a star. Indeed, numerous

extrasolar planetary systems have been found during the last decade where planets of similar
size are rotating either very closely to their Suns, or they were very far from them. A satellite
can be placed at any circular orbit about the Earth by providing it with an appropriate
velocity. Similarly, Rutherford model and Coulomb theory applies no limitations on the
radius of electron orbits. However, it was established experimentally that atoms of a certain
type are totally identical to each other, and, accordingly, their radii are absolutely equal.
That implies that, for some unclear reason, electrons in every atom “know” about the orbit
they are allowed to occupy: thus, all hydrogen atoms in the Universe have exactly the same
radius, and that is true for any other element.

Rutherford’s model provides no explanation for this fact.
1Actually, there is a gravity force between nuclei and electrons, however, due to low masses of nuclei and

electrons, this force is many orders of magnitude smaller than Coulomb force. That is why gravitation is
being neglected during the calculations of atomic structure.
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1.3 Why electrons do not fall onto a nucleus?
This question was the most intriguing questions physicists started to ask immediately

after the Rutherford’s model was proposed. Indeed, why? On the figures 1 a and b, the
planet and electron, accordingly, are affected by a single force (attraction force). According
to the second Newton’s law, that means their motion is an accelerated motion. In general, any
curved motion is accelerated, and the acceleration is directed to the center of curvature. Why
that fact became a source of problems in atomic physics? The reason was simple: according
to the electromagnetic theory, any accelerated motion of a charged object (and an electron
is a charged particle) generates an electromagnetic wave; depending on the magnitude of
acceleration, it can be a visible light, or radio wave, X-rays, UV light, etc.

Figure 2: Emission of light (or-
ange arrows) by a charged body
moving along a circular orbit.

Moreover, emission of electromagnetic waves by elec-
trons moving along a circular orbit is among the best ways
to produce very bright X-rays radiation. In many re-
search centers, for example, in the Brookhaven National
Lab (which is very close to us), a particle accelerator (syn-
chrotron, Fig. 4) is used specially as a source of extremely
bright X-rays. The source provides highly uniform and con-
centrated X-rays that are needed for structural studies of
biological molecules and other materials.

However, when light (or X-rays, or radio waves, etc) is
produced, it carries some energy. Where does this energy
come from? If the source of light is an electron moving
along a curved trajectory, this energy comes from electron’s
energy of motion, i.e. its kinetic energy. In other words,
when an electron moving along a circular orbit emits light,
its energy decreases, which means it is loosing its speed. In synchrotrons, the loss of speed is
compensated by special electromagnets that are continuously “pushing” electrons forward,
so the constant speed is maintained. Without that, electrons would quickly come to almost
a full stop.

Figure 3: Collapse of Ruther-
ford’s atom.

The Rutherford’s atom where electron is making a cir-
cle around a nucleus can be considered as a “small syn-
chrotron”, the only difference is that there no extarnal en-
ergy source to maintain electron’s kinetic energy. That
means the electron orbiting the nucleus would be constantly
emitting electromagnetic waves (i.e. light, UV radiation,
etc) and its velocity would decrease gradually until the elec-
tron fall onto the nucleus. Computation of that process
had been made that demonstrated Rutherford atom would
live less than a tiny fraction of a second, and then collapse
in a bright burst of light.

That is the third and the major paradox of the Ruther-
ford’s atomic model.

Question 2. Explain why deceleration of an electron will lead to its falling onto
the nucleus as shown on the Fig. 3.
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Figure 4: New synchrotron in BNL. The circular building contains a vacuum tunnel where
electrons are running with the speed close to the speed of light. The rectangular buildings
attached to the circle are the labs where the X-ray experiments are made.

2 Planck’s equation
In 1874, a young talented student Max Planck arrived to Munich to study physics. Soon

after that, he had a conversation with his professor, Philipp von Jolly, who told him that
there is no point for such a talented person as Planck to devote himself to physics. “In this
field, almost everything is already discovered, and all that remains is to fill a few holes,” -
von Jolly said. Fortunately for us, Planck was undeterred by these words, and two decades
later he made a discovery that demonstrated these “few holes” were actually a window to a
totally new physics.

Max Plank’s devoted his efforts to filling of one of these “few holes”, concretely, he was
trying to explain the mechanism of light emission by hot bodies. The major difficulty he was
struggling with was the prediction made by classical physical theory. This theory predicted
all hot or even warm bodies should shine brightly in a blue, UV and even X-ray range of
electromagnetic spectrum. Obviously, for everybody who saw our Sun, which is yellow, not
blue, is obvious this prediction of classical physics was blatantly wrong.

In 1900, Planck published an article where he made a paradoxical conclusion: all problems
with the description of light emission by hot bodies could be resolved if we assume the
emission of light occurs not continuously, but in small “wave packets”, each of which carries
the energy equal to:

E = hν

where E is a minimal amount of energy some electromagnetic wave (light, radio wave, X-ray
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wave, etc) can carry, ν is the frequency of this wave, and h - a fundamental constant, called
“Planck’s constant” (about 10−30J · s). In other words, the minimal energy that can be
transferred between two bodies by a very long radio wave with the frequency of 1 Hz (one
oscillation per second) is 10−30J (or h/1s), whereas the minimal amount of energy a green
light can carry is about 6 · 10−16J (frequency of green light is around 6 · 1014Hz). Planck
dubbed this amount “a quantum”2, thereby implying that light should be considered not as
a continuous wave, but as a stream of some “particle-waves” (quanta). According to Planck,
this formula is universal, which means it is valid for any kind of electromagnetic radiation,
and, even more generally, to any case of energy transfer between two bodies.

Since Planck’s constant is very small, the energy a single quantum can carry is also small:
If we compare the energy of a green light quantum (6 · 10−16J) with the energy produced by
a poppy seed (its mass is 0.3 milligram) falling from a table on a floor (elevation is ca 1 m,
so the energy is 3 · 10−7J), we see the latter is one billion times greater. However, taking
into account that there are about 10−16 atoms in a poppy seed, we can conclude the energy
of a single green light quantum is much greater than the energy one molecule would produce
when it falls down from the table to the floor. Accordingly, the energy one quantum of green
light carries is much greater than the energy needed to force one moderate size molecule
jump from a floor to a table.

Why is that fact so important? That means when we consider the world of small objects
(molecules, atoms, electrons or other elementary particles), we must take into account that
energy transfer between these objects occurs not continuously, but in discrete portions.
When scientists estimated a magnitude of momentum of electrons in atoms (and, therefore,
electron’s acceleration), they concluded that the frequency of photons these electrons should
emit roughly corresponded to the frequency of visible light. As we have demonstrated above,
the energy the visible light quantum carries is small, but not negligible when we are talking
about atom size particles, and especially electrons. Actually, it is comparable with the energy
of an average electron in atoms.

One of the most important consequences of that is the following:

When an electron is losing energy via light emission, it is not “spiraling
down” along some smooth curved trajectory as shown on Fig 3. It falls
onto the nucleus in several discrete steps. The electron jumps from
the upper orbit to the next lower orbit, than it jumps even lower, and
each step is achieved by emission of a discrete light quanta with energy
E = hν as shown of Fig 5.

Two important s arise from this conclusion. The first question is: how can we calculate
the actual frequency ν of the photons the electron produces when it jumps from one orbit
to another? The second question is even more crazy: if we assume an electron cannot spiral
down, and it exists either at some upper orbit or some lower orbit, how does the process of
transition occur? Indeed, if we describe an electron that moves between orbits using the same
approach we use to describe, e.g. a space ship, we must conclude that before the electron
arrived to the lower orbit, it mush reach the midpoint, before the midpoint is reached, the
electron must reach a quarterpoint, and so on, an so forth. That reminds a famous Zeno’s

2This word has the same root as “quantity”. It means “a certain amount”.
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aporia, the aporia we discussed last year3 The same can also be said as follows: “If an
electron can occupy just some discrete orbits in an atom, and intermediate orbits are not
allowed, where the electron exists during the process of transition between the orbits?”

Figure 5: Stepvise fall of an elec-
tron on a nucleus. A dashed
curve is a “classical” trajectory.

These two questions became the subject of interest of
a German physicist Werner Heisenberg. In early 1920s,
he decided to develop a rigorous mathematical description
of the process of electron jumps between orbits. Using
an advanced mathematical apparatus, he gave an answer
to the first question, and, more importantly, came to a
totally paradoxical conclusion that is now known as an
uncertainty principle. This principle laid a foundation for
the modern quantum mechanics, and, in particular, it gave
the answer to the question where an electron is when it is
jumping from one orbit to another.

3 Uncertainty principle
The uncertainty principle can be explained as follows.

If we want to know a position (coordinate) of some physical
object with accuracy ∆x (which means the coordinate of this object is x± ∆x), and, at the
same time we want to determine this object’smomentum4, the minimal possible uncertainties
(∆x and ∆p, accordingly) are determined by this equation:

∆p · ∆x >
~
2

The new constant, ~, is the Planck’s constant divided by 2π. ~ is called “reduced Planck
constant”, we will use it in our future calculations. At the first glance, there is no direct
connection this formula and the question about electron’s movement in an atom. The linkage
becomes obvious when we take into account that all early attempts physicists made to explain
atomic structure were the attempts to describe trajectories of electrons in atoms. In contrast,
the above formula means electrons, as well as any small particles, have no trajectory at all.

To understand how can this statement be derived from the uncertainty principle and the
above inequation, let’s remember what does “trajectory” mean. Trajectory is a path some
object follows when it is moving through space. In other words, when some object is moving,
and we can trace its path, we say: “the trajectory of this object is known, because we always
can say where this object is and where it is moving to.” The same can be said in more scientific
terms: both coordinate and velocity (or momentum) of an object can be determined, which
allows us to predict where this object will be in the next moment, and, if we know all

3This aporia says: “Motion cannot exist because before that which is in motion can reach its
destination, it must reach the midpoint of its course, but before it can reach the middle, it
must reach the quarterpoint, but before it reaches the quarterpoint, it first must reach the
eigthpoint, etc. Hence, motion can never start.”

4Momentum (p) is the product of object’s mass and velocity: p = mv.
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forces acting upon this object, we theoretically can calculate its trajectory in distant future.
This is a core idea of classical (Newtonian) mechanics, and numerous calculations made
by physicists and especially astronomers demonstrated that this idea works perfectly is our
big world. Calculations of celestial bodies’ motions are especially impressive: astronomers
predict trajectories of planets, asteroids, satellites or space ships with astonishing accuracy.
However, Heisenberg’s uncertainty principle limits a possibility to trace trajectories. Indeed,
the concept of trajectory implies we can know exact coordinate and exact velocity of any
object of interest, and this assumption works in our big world. For example. if we speak
about, for example, a 1 kg stone, we can say its coordinate is exactly known when the
error in coordinate determination is less than e.g. 1 micrometer. That means ∆x = 10−6.
According to the uncertainty principle, the error in momentum is greater than ~

·10−6 , and,
taking into account that h is very small, the error in momentum determination is negligible.
Since momentum is a product of velocity and mass, the velocity of a 1 kg stone can also be
determined with a very high precision.

Question 3. What is the lowest limit of momentum uncertainty of a 1 kg rock
if its coordinate in know with 1 micrometer accuracy? Do calculation using the
uncertainty principle formula and known value of Planck constant.

It would be correct to say that modern measurement technique does not allow us to
achieve the precision limits when the uncertainty principle becomes detectable for large size
objects (the objects with the mass of several grams and more). That means, we can safely
claim we are able to measure both velocity and position of any macroscopic objects virtually
precisely, in other words we do know where they are and where they are moving, so, in
full accordance with classical mechanics, trajectories of macroscopic bodies can be traced
virtually precisely.

A situation becomes totally different when we are dealing with small bodies (electrons,
protons, etc) with the mass of 10−32 gram or less and the sizes of 10−10 or less). In that
case, the uncertainty principle starts to play a significant role: if the position of an electron
is known with accuracy of 10−10 m (the size of a hydrogen atom), the standard deviation
of electron’s momentum is comparable with the momentum itself, which means it is totally
impossible to predict its trajectory. The latter fact explains the puzzle of electron’s jumps
between orbits: if no trajectory exists for an electron, all Zeno style speculations are not
applicable to electron transitions: it does not need to reach a midpoint during the transition
between the orbits.

The uncertainty principle also explains why electrons do not fall onto the nucleus. The
answer is obvious: electrons cannot fall onto the nucleus because they are already there. They
are almost in the nucleus, but the standard deviation from their position corresponds to the
radius of the lowest orbit: their position is in the nucleus ±∆x. If they come closer, that
means they are confined in a smaller volume, so their ∆p grows, and in the next moment
they will fly away, and their distance from the nucleus increases. However, that will lead to
the drop of electron’s kinetic energy, electrons decelerate, and fall back to the nucleus, and
this dance lasts forever, so some minimal average distance between an electron and a nucleus
is maintained.
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4 Uncertainty principle and a radius of a hydrogen
atom
In this section we will see how the atomic radius of a hydrogen atom (i.e. the
radius of its lowest orbit) is calculated. To do that, we use only four fundamental
physical constants (the Planck’s constant, Coulomb constant, electron mass and
charge) and the universal equations for kinetic and potential energy. We will
do that step by step to demonstrate your current level of knowledge is totally
sufficient for doing that. Try to understand each step, because it will help you to
see how physicists are thinking.

Step 1. Consider a hydrogen atom’s nucleus (a proton) having a coordinate 0, 0, 0
(x = 0, y = 0, z = 0), and assume its electron fell on the nucleus, which means its coordinate
is also 0, 0, 0. Since electron’s position cannot be determined with absolute accuracy, every
time when we try to visualize this electron, we will find it not exactly in the nucleus, but in
a close proximity to it. For simplicity, let’s ignore all axes but the x axis, and let’s discuss
only electron’s x coordinate. After each measurement we will find the electron not at x = 0,
but at some xi. Obviously, the average of all xi is zero (the electron has already fallen on
the nucleus), but instantaneous xi may be slightly greater or smaller (the electron is right of
the nucleus or left to it. In that situation, what is the most probable distance between the
electron and the nucleus? Obviously, it is not zero. To calculate the distance, take a square
of all xi, add them, and take a square root of the sum (a square is always non-negative, so
the average is always greater than zero). In mathematics, we write it like this5

R =
√∑N

i=1 x
2
i

N

Since the above mathematical equation is used to calculate a standard deviation6, it is
correct to say that R (the average distance of the electron from the nucleus) is actually an
standard deviation of this electron from its average position (in the nucleus), in other words,

R = ∆x
,
and this ∆x is the same ∆x we used in a formulation of the Uncertainty principle.

We can use the same approach to describe ∆p. Electron’s momentum can be positive or
negative (it is moving to the left and to the right, but on average it is zero (which means
electron stays near the nucleus). To calculate the average deviation of electron’s momentum
from its zero value, we use the same universal approach: take a square of each instantaneous
values of momentum, pi, and calculate the square root of the average value.

Average∆p =
√∑N

i=1 p
2
i

N

5This notation means: “for each i, starting from 1 to N, take a square of each xi, calculate the average
value of x2

i and take its square root”.
6Strictly speaking, it is true for large N only, but that is what we need.
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Following the same logic we applied to the description of the average electron’s distance
from the nucleus, we conclude average ∆p is the average magnitude of electron’s momentum
(paverage), and it is equal to ∆p in the uncertainty principle formula.

Remember, for a macroscopic observer, average electron’s position is exactly in the nu-
cleus and its average momentum in exactly zero. However, whereas the electron is not flying
away from the nucleus, it experiences some random motions back and forward, and the
average value of the magnitude (length) of the momentum’s vector is mv = ∆p.

At the end of this step, we found that for an electron orbiting the nucleus its ∆x
and ∆p (as defined by the uncertainty principle) are actually equal to the radius
of its orbit and the average magnitude of its momentum. To find this radius, we
need to draw the energy equation.

Step 2. For this step, we use two universal physical rules:

1. Any physical system tries to minimize its energy: it will be evolving until
the lowest energy state is achieved. The lowest electron orbit is the lowest energy
state, so we need to draw the energy equation to find the parameters of electron orbit
that correspond to energy minimum.

2. For a physical object that has no internal structure (no internal parts) the
total energy is a sum of its kinetic energy T (which depends on how fast
the object is moving) and potential energy U (which depends on a position
of this object in space). Since an electron has no internal structure, this rule is
totally applicable to it.

Obviously, ∆x (or R, which is the same in our case) has a relation to electron’s potential
energy (because it tells about the distance between a nucleus and an electron), and ∆p
defines its kinetic energy (because it depends on electron’s speed). Potential energy of the
system where only Coulomb forces are acting can be calculated according to the equation:

U = −ke2

R

Where k is Coulomb coefficient, e is an elementary charge, and R is the average distance
that we discussed above. A minus sign is added because the charge of an electron is −e, and
the charge of a proton is e.

Kinetic energy is always equal to:

T = mv2

2
or

T = p2

2m
because p = mv, where m is electron mass. In our case, mv = ∆p, so

T = ∆p2

2m
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Now we can write the equation of total energy:

E = T + U = ∆p2

2m − ke2

R

We found the equation that describes electron’s energy in an atom as a function
of two variables, ∆p and R. Now we need to find the value of R that corresponds
to the minimal energy state.

Step 2b. Before we started, one more problem should be resolved: The above equation
contains two variables, and that makes calculations difficult. Fortunately, these two variables
are not independent, so we can express one of them through another, which allows us to get
rid of one variable. We want to find R, so let’s get rid of ∆p. The Uncertainty principle says
that

∆p · ∆x >
~
2

so in the lowest energy state ( lowest possible ∆x and ∆p) we can write:

∆p · ∆x ≈ ~

which means

∆p = ~
∆x = ~

R

Now we replace ∆p with = ~
R
in our energy equation, and we get:

E = T + U = ~2

2R2m
− ke2

R

In we denote ~2

2m
as A and ke2 as B, the last equation transforms into this:

E = A

R2 − B

R

so the last thing we have to do is to find R that corresponds to the minimal value of E
(energy).

Congratulations! We found the energy equation (that is the standard way
physicists approach most problems: if a situation is unclear, draw the energy
equation). The remaining steps require just basic math knowledge.

Step 3.
To obtain the atomic radius, we need to find the value of R that corresponds to the

lowest value of energy. Does this minimum exist? Sure. If you look at kinetic energy, you
see it grows when R approaches zero (its square is in a denominator). In contrast, potential
energy decreases when the radius drops. Definitely, some minimum should exist. Let’s find
it.
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Two ways to find R exist. Using a standard handbook (or Google), we can obtain the val-
ues of π, e, k, m, and h, we can just do a series of calculations of energy for different R. The
results to these calculations are shown at the fig. 6. The total energy minimum corresponds
to the distance of 5·10−11m, which is approximately a half of experimentally measured diame-
ter of a hydrogen atom (1.1·10−10m). In other words, our prediction is astonishingly accurate.

Figure 6: Total energy (red curve) of an electron
calculated using our equation for different orbit
radii. A minimal value (shown by an arrow) corre-
sponds to the radius of 5 · 10−11m.

For our calculations, we
used just an assumption that
the uncertainty principle is
valid, and that the elec-
tron exists in the atom in
its most stable (lowest en-
ergy) state (or, in other
words, that it fell on a nu-
cleus). The calculations we
made reproduce the exper-
imentally observed results
(the atomic radius of a hy-
drogen atom), which means
our assumptions are cor-
rect. That is very im-
portant, because we haven’t
learned just one more in-
teresting fact, we learned
how to obtain new knowl-
edge. And, now we see that
calculations made using the
quantum theory are not something overwhelmingly crazy, something that you can
never understand. It would be very good is you read and understood the above
text, because it tells about much more important thing than just atomic radius of
a hydrogen atom.

Step 3b. This is an optional step, you can skip it, but for those who wants to know more
about computations in physics this part may be useful.

Another method to obtain R exists, it is much more elegant, it provides much more
accurate results, and, importantly, it represents some important trick physicists use to solve
a wide range of problems. This method requires some familiarity with calculus to convert
the energy equation into the energy growth equation. Fortunately, you don’t have to know
calculus for that, you just need to understand one simple fact:

When some mathematical function reaches its minimum, its growth rate be-
comes zero. That means to find a minimal value of a mathematical function we need to
find a point where its growth rate is zero.

We can do that using one rule:
For a function:
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fx = Axn

the equation of its growth is:

growth = nAxn−1

Using this rule, we transform the final equation from the previous step:

E = ~2

2R2m
− ke2

R
and we get this:

growth = −2 ~2

2R3m
+ ke2

R2

Remember, we are interested to find only one point, namely, the point where the growth
is zero, so the left part of this equation becomes zero:

0 = −2 ~2

2R3m
+ ke2

R2

and, in a simplified form,

~2

R3m
= ke2

R2

or even simpler:

~2

Rm
= ke2

(note, all of that are just trivial algebraic transformations).
Now we rearrange the equation to get R, and we are done:

R = ~2

ke2m
If we put the values of π, e, k, m, and h into this formula, we get 5.3 · 10−11m, and this

value corresponds to the experimentally observed atomic radius of hydrogen perfectly.
Now we can safely conclude we explained the most intriguing puzzle of an atom: why

electrons do not fall onto a nucleus.
Question 4. Using the last formula for the atomic radius of a hydrogen atom,
calculate the radius of a single positively charged helium atom (the atom with one
electron and a helium nucleus) and the radius of a lithium atom with a double
positive charge. Do you see any interesting dependence?

Homework
Read the CW materials and answer Questions 1-4 in the text.
If you have any questions, feel free to ask.

My e-mail is mark.lukin@gmail.edu
c©Mark Lukin.
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