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Homework 5 

Lensmaker’s equation. 

We found that the refraction at the concave spherical surface gives: 

𝑛1

𝑠
−

𝑛2

𝑠′
=

𝑛1−𝑛2

𝑅
         (1) 

Here n1 and n2 are refractive indices of 2 medias, s is the distance from the source to the concave 

surface (the concave surface is bent “from the source”), s’ is the distance to the image, R is the 

radius of the surface. 

 

Figure 1. Ray diagram of a convex lens. 

We can rewrite the expression (1) using the same sign convention we used for the spherical 

mirrors: 

𝑛1

𝑠
+

𝑛2

𝑠′
=

𝑛2−𝑛1

𝑅
          (2) 

 

This sign convention is: “positive distances for real images and objects, negative distances for 

the virtual ones. Positive radius of curvature for convex surfaces and negative for concave 

ones.” 

Now let us consider area with a refraction index n2, bounded by 2 spherical surfaces with 

different radii of curvature R1, left and R2, right (Figure 2). This area works as a convex lens. The 

light rays emanated from object RO (real object) are refracted at the surface 1 (convex, as it is 

“seen” by the rays). After the refraction they converge as if they would meet at the tip of object 

VO, and we can write: 
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𝑛1

𝑠1
+

𝑛2

𝑠1
′ =

𝑛2−𝑛1

𝑅1
           (8) 

But this does not happen because the rays are intercepted by the second surface which they “see” 

as a concave one. This “interception”, of course, does not affect the refraction at the first surface. 

Note, that ion this time they come from the media with refractive index n2 to the media with a 

refractive index n1. After the refraction at the second surface the rays are focused and form a real 

image RI. What is the relation between the distance to the “would be” image VO and the real 

image RI? To answer this question let us consider just the second surface. We learned that if we 

would be able to reverse the time, the trajectories of the light rays would have stayed the same, but 

the propagation directions would have changed to the opposite ones. In other words, geometrical 

optics is “time reversible”. So, let us reverse the time. In this case, the light rays will be emitted 

from the object RI and, after refraction at the second surface, they will diverge as if they would 

have come from VO, which, in this case, would work as a virtual image. So, we can write same 

expression as (8).  

𝑛2

𝑠2
+

𝑛1

𝑠2
′ =

𝑛1−𝑛2

𝑅2
        (9) 

We should keep in mind that in reality the rays go toward VO rather than from it, so VO works as 

a “virtual object”. Now, the distance s2 to the virtual object is: 

𝑠2 = −(𝑠1
, − 𝑡) = 𝑡 − 𝑠1

′
     (10) 

We used negative sign since VO is a virtual object. In a “thin lens approximation”, we can neglect 

t (later we will give more accurate criteria for the “thin lens”). In this case  

𝑠2 ≈ −𝑠1
′             (11) 

Now we can substitute -S1 instead S2 in to equation (9) and add equations (8) and (9).: 

𝑛1

𝑠1
+

𝑛1

𝑠2
′ = (𝑛2 − 𝑛1) (

1

𝑅1
−

1

𝑅2
)          (12) 

Now S1 is the original object distance So and S2’ is the final image distance Si so, after dividing 

both parts of the equation (12) by n1 we have: 

1

𝑠𝑜
+

1

𝑠𝑖
=

𝑛2−𝑛1

𝑛1
(
1

𝑅1
−

1

𝑅2
)           (13) 

The focal length f of the thin lens is defined as the image distance for an object at infinity (in this 

case the light rays from the object are parallel). If 𝑠𝑜 → ∞ , then 1/𝑠𝑖 → 0 , and 𝑠𝑖 → 𝑓, so we 

have: 

1

𝑓
=

𝑛2−𝑛1

𝑛1
(
1

𝑅1
−

1

𝑅2
)         (14) 
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Equation 14 is called “lensmaker’s equation”. This equation makes it possible to calculate focal 

distance of the lens if you know the radii of curvature of the sides and refractive indices of the lens 

material (n2) and the media where the lens is used (n1) (Figure3). Equation (13) can be then 

rewritten as: 

1

𝑠𝑜
+

1

𝑠𝑖
=

1

𝑓
           (15) 

This is the same equation we used for the reflection at spherical surfaces. Now we can give a more 

accurate definition of the thin lens: a lens is considered “thin” if the thickness of the lens is much 

less than its focal distance. 

 

 

Figure 3. Biconvex lens 

For the biconvex lens shown in Figure 1 light moving from left to right first “meets’ the convex 

surface with radius of curvature R1. Then, moving inside the lens, the light “meets” another 

surface, concave, with radius of curvature R2. So in the lensmaker’s equation for a biconvex lens 

R2 has to be taken with “minus” sign. 

 

Problems: 

1. Does the focal distance of a lens change if we immerse the lens it in water? 

2. Can same lens work as a converging or diverging lens depending on the substanceit is placed 

in? 

3. Find a formula for the focal distance of a symmetrical biconvex lens with both radii of curvature 

equal to R and the lens material refractive index in n. The lens will be used in air (n air ≈ 1). 

R
2
 

R
1
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Compare this formula with the formula for the focal distance of a spherical mirror with the same 

radius of curvature. 

4. In a thick glass plate there is a hollow shaped as a convex lens. Will this “lens” work as 

converging or diverging? Prove your answer.  

5. A convex-concave lens (see fig. below) has radii of curvature R=10cm and 3R. Find refractive 

index of the lens material if its focal length is 20 cm. (The lens is in air, n=1) 

 

R 3R 


