Homework 4.

Refraction at a spherical surface.

Let us consider refraction at a spherical surface. We have two media with refractive indices \mathbf{n}_{1} and \mathbf{n}_{2}. The media are separated with a spherical boundary (Figure 1)

Figure 1. Refraction at a spherical surface.
We are going to find the image of point O . For this we will use two rays emanating from point O : OQ and OP. Ray OP is refracted at point P , the refraction angle is Θ_{1}. Point C is the center of the spherical surface, so CP is the radius of the sphere. As we know, CP is perpendicular to the sphere's tangent plane in point P . So, for ray $\mathrm{OP}, \boldsymbol{\theta}_{1}$ is the angle of incidence and $\boldsymbol{\theta}_{2}$ is the angle of refraction. According to Snell's law we have:

$$
\begin{equation*}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \tag{1}
\end{equation*}
$$

The refracted ray and the ray OQ appear to emerge from their common intersection, point \mathbf{I} which is the image of point \mathbf{O}. In triangle CPO, $\boldsymbol{\alpha}$ is the exterior angle, so we have:

$$
\begin{equation*}
\alpha=\theta_{1}+\varphi \tag{2}
\end{equation*}
$$

For triangle CPI we have:

$$
\begin{equation*}
\alpha^{\prime}=\theta_{2}+\varphi \tag{3}
\end{equation*}
$$

From (1), (2) and (3), we obtain:

$$
\begin{equation*}
n_{1}(\alpha-\varphi)=n_{2}\left(\alpha^{\prime}-\varphi\right) \tag{4}
\end{equation*}
$$

Then we will neglect the distance QV (we assume that the radius R is much larger than h) and express the angles $\boldsymbol{\alpha}, \boldsymbol{\alpha}^{\prime}$ and φ through $\mathbf{s}, \mathbf{s}^{\prime}$ and \mathbf{h} as:

$$
\begin{equation*}
\alpha \approx \frac{h}{s} ; \alpha^{\prime} \approx \frac{h}{s^{\prime}} ; \varphi \approx \frac{h}{R} \tag{5}
\end{equation*}
$$

Here we used the approximation $\operatorname{tg}(\alpha) \approx \alpha$, which is valid for small angles. So we have:

$$
\begin{equation*}
n_{1}\left(\frac{h}{s}-\frac{h}{R}\right)=n_{2}\left(\frac{h}{s^{\prime}}-\frac{h}{R}\right) \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{n_{1}}{s}-\frac{n_{2}}{s^{\prime}}=\frac{n_{1}-n_{2}}{R} \tag{7}
\end{equation*}
$$

Problems:

1. How does formula (7) change if we will consider convex boundary?
2. Try to find geometrical position of an image of an object produced by a higher refraction index region bounded by convex and concave surfaces (see Fig below)

