Gravity and Electrostatics

- Newton's Law of Gravity. Two masses, m_{1} and m_{2}, experience gravitational attractive force to each other, that depends on distance between them, r :

$$
F=-\frac{G m_{1} m_{2}}{r^{2}} ; \quad G=6.7 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}
$$

G is called Gravitational Constant. In this equation, ' - ' sign stands for attraction (positive direction is "away") .

- Coulomb's Law. Two electric charges, q_{1} and q_{2}, at distance r , act onto each other with electrostatic force given by Coulomb's formula:

$$
F=\frac{k q_{1} q_{2}}{r^{2}} ; \quad k=9 \cdot 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}
$$

Here k is called Coulomb's constant . SI unit of electric charge is 1 Coulomb (1C), which is a very large charge. Coulomb's Law is very similar to Newton's, but

- Electric charges can be positive or negative, unlike masses.
- Note that the signs in two laws are different. As a result, charges of the same sign repel, while the opposite ones attract each other.

Homework

Problem 1

a) By using Newton's law of gravity, find the gravitational acceleration on the surface of a planet with mass M and radius R . For doing this, consider an apple of mass m . Its weight is mg . But it also must be equal to Newton's gravitational force.
b) Imagine that you discovered a planet with the same density as Earth, but its radius is twice as big. What will be the value of g on that planet?

Problem 2

Two identical charges placed at distance $10 \mathbf{~ c m}$ from each other experience repulsive force 0.1 N . Determine the magnitude of the charges.

