Acceleration

- Acceleration:

$$
a=\frac{\text { change in velocity }}{\text { time }}=\frac{\Delta v}{t}
$$

Standard units of acceleration : $\mathrm{m} / \mathrm{s}^{2}$

- If there were no air resistance, all objects in Earth gravity would fall with the same acceleration,
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
(directed downward)

Galileo Galilei's experiment in Pisa (possibly, a legend)

Homework 6

Problem 1.

NASA wants to measure free fall acceleration precisely. To do that, they perform an experiment in which they measure how speed of a falling object changes with time during free fall in vacuum. The results are provided in the table. Find the acceleration during each segment.

$t(s)$	0	2	5	10	15
$\mathbf{v}(\mathrm{~m} / \mathrm{s})$	0	19.62	49.05	98.10	147.15

Problem 2.

A car starts at rest at $t=0 \mathrm{~s}$. The car accelerates at $\mathrm{a}=6 \mathrm{~m} / \mathrm{s}^{2}$ until it reaches a velocity of $v=42 \mathrm{~m} / \mathrm{s}$. (a) How long did it take for the car to reach this velocity? The car kept this speed for $5 s$, until the driver saw a police car in the horizon. The driver slammed the brakes bringing the speed of the car down to $v=27 \mathrm{~m} / \mathrm{s}$ in just $3 s$. (b) What was the acceleration of the car during the braking process?

See problem 3 on the next page.

Problem 3.

In the following graph of v vs. t, draw the behavior of the velocity of the car in the previous problem.

