Motion at constant acceleration

- Acceleration:

$$
a=\frac{\text { change in velocity }}{\text { change in time }}=\frac{\Delta v}{\Delta t}
$$

- If there were no air resistance, all objects in Earth gravity would fall with the same acceleration, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
- For motion at constant acceleration a, with no initial speed, the distance traveled after time t is:

$$
d=v_{\text {average }} t=\left(\frac{a t}{2}\right) \times t=\frac{a t^{2}}{2}
$$

Homework 8

Problem 1.

The largest passenger airplane, Airbus A380, has the take off speed v= $280 \mathrm{~km} / \mathrm{hr}$. It reaches that speed by moving at acceleration $a=2 \mathrm{~m} / \mathrm{s}^{2}$, starting from rest. How long the runway should be so that it has enough space to accelerate? Hint: few weeks ago we found the time it takes this plane to accelerate.

Problem 2.

Suppose that you are trying to reproduce an experiment of Galileo by dropping a rock from certain tower. The time of its free fall turns out to be $t=5.0$ seconds.
a) How tall is the tower?
b) What will be the time of the rock's fall if it is dropped from half the tower's height?

