
Acceleration

• Acceleration:

Standard units of acceleration : m/s²

 If there were no air resistance, all objects in Earth gravity would fall with the same acceleration, g=9.8 m/s²

(directed downward)

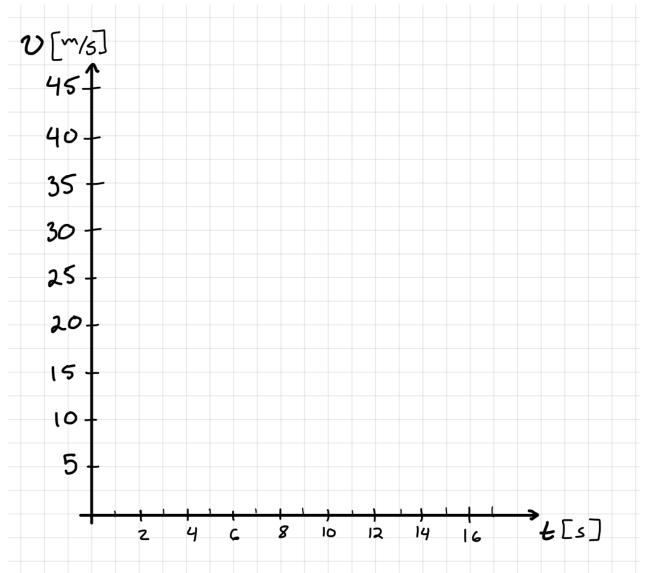
Galileo Galilei's experiment in Pisa (possibly, a legend)

Homework 7

Problem 1.

NASA wants to measure free fall acceleration precisely. To do that, they perform an experiment in which they measure how speed of a falling object changes with time during free fall in vacuum. The results are provided in the table. Find the acceleration during each segment.

t(s)	0	2	5	10	15
v(m/s)	0	19.62	49.05	98.10	147.15


Problem 2.

A car starts at rest at $t = 0 \ s$. The car accelerates at $a = 6 \ m/_{s^2}$ until it reaches a velocity of $v = 42 \ m/_s$. (a) How long did it take for the car to reach this velocity? The car kept this speed for 5s, until the driver saw a police car in the horizon. The driver slammed the brakes bringing the speed of the car down to $v = 27 \ m/_s$ in just 3s. (b) What was the acceleration of the car during the braking process?

See problem 3 on the next page.

Problem 3.

In the following graph of v vs. t, draw the behavior of the velocity of the car in the previous problem.

