Acceleration

- Acceleration:

Standard units of acceleration: m/s ${ }^{2}$ (meters per second per second)

The formula for acceleration can be inverted to find the time:

$$
t=\frac{\Delta v}{a}
$$

Or the change in speed:

$$
\Delta v=a t
$$

Homework 6

Problem 1.

The largest passenger airplane, Airbus A380, needs 40 seconds to reach its takeoff speed, $\mathrm{v}=280 \mathrm{~km} / \mathrm{h}$. What is the acceleration of the plane? Convert your answer to $\mathrm{m} / \mathrm{s}^{2}$.

Problem 2.

If in the future humans are to reach the nearby stars, they would need spaceships traveling with speed close to the speed of light. Imagine that a spaceship is accelerating with acceleration $10 \mathrm{~m} / \mathrm{s}^{2}$.
a) How long would it take such a ship to reach $1 / 10$ of the speed of light? Speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
b) How long would it take such a ship to reach the Alpha Centauri system which is about 4 lightyears away from the Earth (and is the star system closest to us)? Assume that after reaching $1 / 10$ of the speed of light the spaceship continues to move with that speed.

