Classwork/Test

Due at the end of the class.

Main Algebraic Identities/formula

$$
\begin{gathered}
a^{-n}=\frac{1}{a^{n}} \\
\left(a^{m}\right)^{n}=a^{m n} \\
\frac{m}{n}=\sqrt[n]{a^{m}} \\
\sqrt{a b}=\sqrt{a} \sqrt{b} \\
(a+b)^{2}=a^{2}+2 a b+b^{2} \\
(a-b)^{2}=a^{2}-2 a b+b^{2} \\
a^{2}-b^{2}=(a-b)(a+b)
\end{gathered}
$$

Arithmetic series

$$
\begin{gathered}
a_{n}=a_{1}+(n-1) d \\
a_{n}=\frac{a_{n-1}+a_{n+1}}{2} \\
d=\frac{a_{s}-a_{t}}{s-t} \\
S=\frac{\left(a_{1}+a_{n}\right) \times n}{2}
\end{gathered}
$$

Geometric series

$$
\begin{gathered}
a_{n}=a_{1} \times q^{n-1} \\
a_{n}=\sqrt{a_{n-1} \cdot a_{n+1}} \\
S_{n}=a_{1} \times \frac{\left(1-q^{n}\right)}{1-q} \\
\mathrm{~S}=\frac{a_{1}}{1-q}
\end{gathered}
$$

Binomial coefficients
$n C_{k}=\binom{n}{k}=$ the number of paths on the chessboard going k units up and $\mathrm{n}-\mathrm{k}$ to the right
$=$ the number of words that can be written using k ones and $\mathrm{n}-\mathrm{k}$ zeroes
$=$ the number of ways to choose k items out of n (order doesn't matter)

- Formula for binomial coefficients

There is an explicit formula to calculate $\binom{n}{k}$:

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k!}=\frac{n!}{(n-k)!k!}
$$

- Formula for permutations (the number of ways of choosing k items out of n when the order matters): Compare it with the number of ways of choosing k items out of n when the order matters:

$$
{ }_{n P k}=n(n-1) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

Binomial probabilities

The binomial coefficients are also useful in calculating probabilities. Imagine that we have some event that happens with probability p ("success") and does not happen with probability $q=1-p$ ("failure"). Then the probability of getting k successes in n trials is:

$$
P(k \text { successes in } n \text { trials })=\binom{n}{k} p^{k} q^{n-k}
$$

Where,

- p - probability of success in one try;
- $q=1-p-$ probability of failure in one try;
- n - number of trials;
- k - number of successes;
- $\mathrm{n}-\mathrm{k}$ - number of failures.

Problems:

1. Expand as sums of powers of x (hint: you may use binomial formula):
a. $(2 x+5)^{2}$
b. $(a+b)^{3}$
c. $(1-x)^{5}$
2. Factor (i.e., write as a product) the following expressions:
a. $(x-2)^{2}-(y+3)^{2}$
b. $256-a^{8} b^{8}$
c. $x^{4}+4$
d. $p^{4}+4 z^{4 n}$
e. $t^{2}-3 / 2 t+1 / 2$
f. $6 a^{2}-25 a+24$
3. Simplify:
a. $\frac{x}{\left(x^{2}-y^{2}\right)}-\frac{y}{(x+y)^{2}}$
b. $\frac{a+b}{(b-c)(c-a)}+\frac{b+c}{(c-a)(a-b)}+$ $\frac{c+a}{(a-b)(b-c)}$
4. $a_{5}=27$ and $a_{27}=60$. Find the first term a_{1} and the common difference d.
5. Find the common difference d in an arithmetic sequence if the 9 -th term is 18 and the 11 -th term is 44.
6. An arithmetic progression has first term $a_{1}=a$ and common difference $d=-1$. The sum of the first n terms is equal to the sum of the first $3 n$ terms. Express a in terms of n.
7. Write the first 5 terms of a geometric progression if $a_{l}=-20$ and $q=\frac{1}{2}$
8. Calculate the sum: $\quad \frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{10}}$
9. A geometric progression has 99 terms, the first term is 12 and the last term is 48 . What is the 50 -th term?
10. How many ways are there to seat 5 students in a class that has 5 desks? if there are 10 desks?
11. If we toss a coin 10 times, what is the probability that all will be heads? that there will be exactly one tails? 2 tails? exactly 5 tails?
12. You roll a die 100 times. What is the probability of getting a 6 exactly 20 times?
13. A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5 . If he fires 4 shots, what is the probability of
(a) more than 2 hits?
(b) at least 3 misses
