MATH 8: HANDOUT 24 NUMBER THEORY 2: EUCLID'S ALGORITHM

NOTATION

 \mathbb{Z} — all integers

 \mathbb{N} — positive integers: $\mathbb{N} = \{1, 2, 3 \dots \}$.

d|a means that d is a divisor of a, i.e., a = dk for some integer k.

gcd(a, b): greatest common divisor of a, b.

EUCLID'S ALGORITHM

In the last assignment, we proved the following:

Theorem. If a = bq + r, then the common divisors of pair (a, b) are the same as common divisors of pair (b, r). In particular,

$$\gcd(a,b) = \gcd(b,r)$$

This gives a very efficient way of computing the greatest common divisor of (a,b), called Euclid's algorithm:

- **1.** If needed, switch the two numbers so that a > b
- **2.** Compute the remainder r upon division of a by b. Replace pair (a,b) with the pair (b,r)
- **3.** Repeat the previous step until you get a pair of the form (d,0). Then gcd(a,b) = gcd(d,0) = d.

For example:

$$\begin{split} \gcd(42,100) &= \gcd(42,16) \qquad \text{(because } 100 = 2 \cdot 42 + 16\text{)} \\ &= \gcd(16,10) = \gcd(10,6) = \gcd(6,4) \\ &= \gcd(4,2) = \gcd(2,0) = 2 \end{split}$$

As a corollary of this algorithm, we also get the following two important results.

Theorem. Let $d = \gcd(a, b)$. Then m is a common divisor of a, b if and only if m is a divisor of d.

In other words, common divisors of a, b are the same as divisors of $d = \gcd(a, b)$, so knowing the GCD gives us **all** common divisors of a, b.

Theorem. Let $d = \gcd(a, b)$. Then it is possible to write d in the following form

$$d = xa + yb$$

for some $x, y \in \mathbb{Z}$.

(Expressions of this form are called linear combinations of a, b.)

Proof. Euclid's algorithm produces for us a sequence of pairs of numbers:

$$(a,b) \to (a_1,b_1) \to (a_2,b_2) \to \dots$$

and the last pair in this sequence is (d, 0), where $d = \gcd(a, b)$.

We claim that we can write (a_1, b_1) as linear combination of a, b. Indeed, by definition

$$a_1 = b = 0 \cdot a + 1 \cdot b$$

$$b_1 = r = a - qb = 1 \cdot a - qb$$

where a = qb + r.

By the same reasoning, one can write a_2, b_2 as linear combination of a_1, b_1 . Combining these two statements, we get that one can write a_2, b_2 as linear combinations of a, b. We can now continue in the same way until we reach (d, 0).

Here is an example. We have shown above that gcd(100, 42) = 2 using Euclid's algorithm. We can now use that computation to write 2 as a linear combination of 100 and 42:

$$\begin{aligned} 16 &= 100 - 2 \cdot 42 \\ 10 &= 42 - 2 \cdot 16 = 42 - 2(100 - 2 \cdot 42) = -2 \cdot 100 + 5 \cdot 42 \\ 6 &= 16 - 10 = (100 - 2 \cdot 42) - (-2 \cdot 100 + 5 \cdot 42) = 3 \cdot 100 - 7 \cdot 42 \\ 4 &= 10 - 6 = (-2 \cdot 100 + 5 \cdot 42) - (3 \cdot 100 - 7 \cdot 42) = -5 \cdot 100 + 12 \cdot 42 \\ 2 &= 6 - 4 = (3 \cdot 100 - 7 \cdot 42) - (-5 \cdot 100 + 12 \cdot 42) = 8 \cdot 100 - 19 \cdot 42 \end{aligned}$$

PROBLEMS

When doing this homework, be careful that you only used the material we had proved or discussed so far — in particular, please do not use the prime factorization. And I ask that you only use integer numbers — no fractions or real numbers.

- 1. Use Euclid's algorithm to compute gcd(54, 36); gcd(97, 83); gcd(1003, 991)
- 2. Use Euclid's algorithm to find all common divisors of 2634 and 522.
- **3.** Prove that gcd(n, a(n+1)) = gcd(n, a)
- **4.** (a) Is it true that for all a, b we have gcd(2a,b) = 2 gcd(a,b)? If yes, prove; if not, give a counterexample.
 - (b) Is it true that *for some* a, b we have gcd(2a, b) = 2 gcd(a, b)? If yes, give an example; if not, prove why it is impossible.
- 5. (a) Compute gcd(14, 8) using Euclid's algorithm
 - (b) Write gcd(14, 8) in the form 8k + 14l. (You can use guess and check, or proceed in the same way as in the previous problem)
 - (c) Does the equation 8x + 14y = 18 have integer solutions? Can you find at least one solution?
 - (d) Does the equation 8x + 14y = 17 have integer solutions? Can you find at least one solution?
 - (e) Can you give complete answer, for which integer values of c the equation 8x+14y=c has integer solutions?
- 6. If I only have 15-cent coins and 12-cent coins, can I pay \$1.35? \$1.37?
- 7. You have two cups, one 240 ml, the other 140 ml. What amounts of water can be measured using these two cups? [You can assume that you also have a large bucket of unknown volume.]
- **8.** (a) Show that if 17c is divisible by 6, then c is divisible by 6. Note: you can not use prime factorization we have not yet proved that it is unique! Instead, you can argue as follows: since gcd(17,6) = 1, we can write 1 = 17x + 6y. Thus, c = (17x + 6y)c. Now argue why the right-hand side is divisible by 6.
 - *(b) More generally, prove that if $a,b,c\in\mathbb{Z}$ are such that a|bc and $\gcd(a,b)=1$, then one must have a|c.
- **9.** (a) Show that if a is odd, then gcd(a, 2b) = gcd(a, b). *Hint: you can use "theorem" in 8(b) even if you haven't solved it.*
 - *(b) Show that for $m, n \in \mathbb{N}$, $\gcd(2^n 1, 2^m 1) = 2^{\gcd(m,n)} 1$