MATH 7: HANDOUT 17 COORDINATE GEOMETRY 1: REVIEW. LINES AND CIRCLES. BASIC TRANSFORMATIONS

1. COORDINATE GEOMETRY: INTRODUCTION

In this section of the course we are going to study coordinate geometry. The basic notion is the **coordinate plane** – a plane with a given fixed point, called the **origin**, as well as two perpendicular lines – **axes**, called the *x*-**axis** and the *y*-**axis**. *x*-axis is usually drawn horizontally, and *y*-axis — vertically. These two axes have a **scale** – "distance" from the origin.

The scales on the axes allow us to describe any point on the plane by its **coordinates**. To find coordinates of a point P, draw lines through P perpendicular to the x- and y-axes. These lines intersect the axes in points with coordinates x_0 and y_0 . Then the point P has x-coordinate x_0 , and y-coordinate y_0 , and the notation for that is: $P(x_0, y_0)$.

The **midpoint** *M* of a segment *AB* with endpoints $A(x_1, y_1)$ and $B(x_2, y_2)$ has coordinates:

$$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

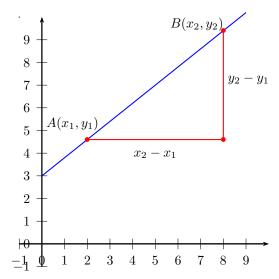
2. Lines

Given some relation which involves variables x, y (such as x+2y = 0 or $y = x^2+1$), we can plot on the coordinate plane all points M(x, y) whose coordinates satisfy this equation. Of course, there will be infinitely many such points; however, they usually fill some smooth line or curve. This curve is called the **graph** of the given relation.

Every relation (**equation**) of the form:

y = mx + b

where m, b are some numbers, defines a straight line. The slope of this line is determined by m: as you move along the line, y changes m times as fast as x, so if you increase x by 1, then y will increase by m:



In other words, given two points $A(x_1, y_1)$ and $B(x_2, y_2)$ slope can be computed by dividing change of $y: y_2 - y_1$ by the change of $x: x_2 - x_1$:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Two non vertical lines are **parallel** if and only if they have the **same slope**.

In the equation y = mx + b, b is a *y*-intercept, and determines where the line intersects the vertical axis (*y*-axis). The equation of the **vertical** line is x = k, and the equation of the **horizontal** line is y = k. Notice that in case of the vertical line, the slope is undefined.

3. DISTANCE BETWEEN POINTS. CIRCLES

The distance between two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is given by the following formula:

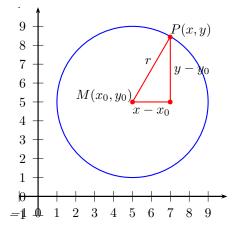
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

This formula is a straightforward consequence of the Pythagoras' Theorem.

The equation of the circle with the center $M(x_0, y_0)$ and radius r is

$$(x - x_0)^2 + (y - y_0)^2 = r^2.$$

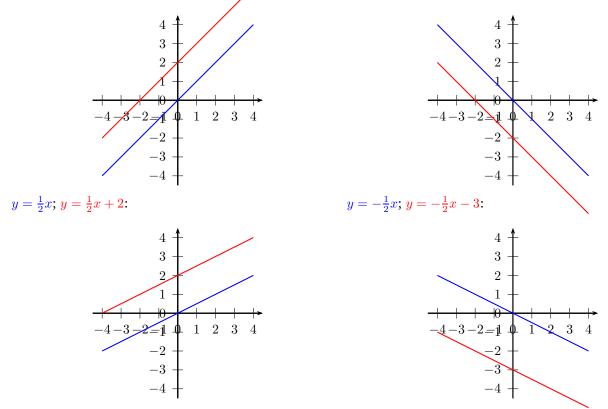
This equation means, that points (x, y) should be at distance r from the given point $M(x_0, y_0)$.



4. GRAPHS OF FUNCTIONS

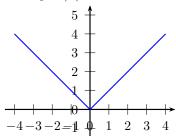
In general, the relation between x and y could be more complicated and could be given by some formula of the form y = f(x), where f is some function of x (i.e., some formula which contains x). Then the set of all points whose coordinates satisfy this relation is called the **graph** of f.

Line. The graph of the function y = mx + b is a straight line. The coefficient *m* is called the *slope*. y = x; y = x + 2:



GRAPH OF
$$y = |x|$$

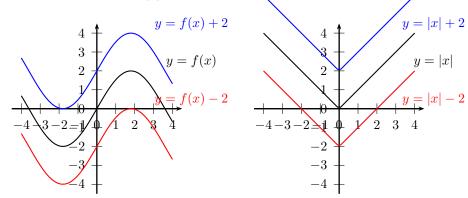
The figure below shows a graph of a function y = |x|.



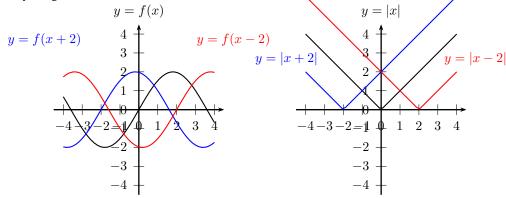
5. TRASNFORMATIONS

Having learned a number of basic graphs, we can produce new graphs, by doing certain transformations of the equations. Here are two of them.

Vertical translations: Adding constant c to the right-hand side of equation shifts the graph by c units up (if c is positive; if c is negative, it shifts by |c| down.)



Horizontal translations: Adding constant c to x shifts the graph by c units left if c is positive; if c is negative, it shifts by c right.



Homework

- **1.** A point *B* is 5 units above and 2 units to the left of point A(7,5). What are the coordinates of point *B*?
- **2.** Find the coordinates of the midpoint of the segment *AB*, where A = (3, 11), B = (7, 5).
- **3.** Draw points A(4,1), B(3,5), C(-1,4). If you did everything correctly, you will get 3 vertices of a square. What are coordinates of the fourth vertex? What is the area of this square?
- **4.** 3 points (0,0), (1,3), (5,-2) are the three vertices of a parallelogram. What are the coordinates of the remaining vertex?
- **5.** Consider the triangle $\triangle ABC$ with the vertices A(-2, -1), B(2, 0), C(2, 1). Find the coordinates of the midpoint of *B* and *C*. Find the length of the median (i.e. a median unites a vertex with the midpoint of the opposite side) from *A* in the triangle $\triangle ABC$.
- 6. What is the slope of a line whose equation is y = 2x? What is the slope of a line whose equation is y = mx?
- 7. In this problem you will find equations that describe some lines.
 - (a) What is the equation whose graph is the *y*-axis?
 - (b) What is the equation of a line whose points all lie 5 units above the *x*-axis?
 - (c) Is the graph of y = x a line? Draw it.
 - (d) Find the equation of a line that contains the points (1, -1), (2, -2), and (3, -3).
- **8.** For each of the equations below, draw the graph, then draw the perpendicular line (going through the point (0, 0)) and then write the equation of the perpendicular line

(a)
$$y = 2x$$
 (b) $y = 3x$
(c) $y = -x$ (d) $y = -\frac{1}{2}x$

Can you determine the general rule: if the slope of a line is k, what is the slope of the perpendicular line?

- **9.** Find the equation of the line through (1, 1) with slope 2.
- **10.** Find the equation of the line through points (1, 1) and (3, 7). [Hint: what is the slope?]
- (a) Find k if (1,9) is on the graph of y 2x = k. Sketch the graph.
 (b) Find k if (1,k) is on the graph of 5x + 4y 1 = 0. Sketch the graph.
- 12. Let l_1 be the graph of y = x + 1, l_2 be the graph of y = x 1, m_1 be the graph of y = -x + 1, and m_2 be the graph of y = -x 1.
 - (a) Find the intersection point of l_1 and m_1 ; Label this point P and write down its coordinates.
 - (b) Find the intersection point of l_2 and m_2 ; Label this point P and write down its coordinates.
 - (c) Find the midpoint of *AB* and write down its coordinates.
 - (d) Let *C* be the intersection point of l_1 with m_2 , and *D* be the intersection point of l_2 with m_1 . What kind of quadrilateral is *ABCD*?
 - (e) Explain why l_1 and l_2 are parallel. What is the distance between them?
- 13. Find the intersection point of a line y = x 3 and a line y = -2x + 6. Sketch the graphs of these lines.
- 14. Sketch graphs of the following functions:

(a)
$$y = |x| + 1$$
 (b) $y = |x + 1|$ (c) $y = |x - 5| + 1$