MATH 7: HANDOUT 13
 QUADRATIC FORMULA

Quadratic Equations.

Today we discussed how one solves quadratic equation:

$$
a x^{2}+b x+c=0
$$

The method used is called "completing the square". Here is an example how it works:

$$
x^{2}+6 x+2=x^{2}+2 \cdot 3 x+9-7=(x+3)^{2}-7=(x+3+\sqrt{7})(x+3-\sqrt{7})
$$

thus, $x^{2}+6 x+2=0$ if and only if $x+3+\sqrt{7}=0$, which gives $x=-3-\sqrt{7}$, or $x+3-\sqrt{7}=0$, which gives $x=-3+\sqrt{7}$.

The same trick works in general: if $a=1$, then

$$
\begin{align*}
x^{2}+b x+c & =x^{2}+2 \frac{b}{2} x+c=\left(x^{2}+2 \frac{b}{2} x+\frac{b^{2}}{2^{2}}\right)-\frac{b^{2}}{2^{2}}+c \tag{1}\\
& =\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}-4 c}{4}=\left(x+\frac{b}{2}\right)^{2}-\frac{D}{4}
\end{align*}
$$

where $D=b^{2}-4 c$.
Thus, $x^{2}+b x+c=0$ is equivalent to

$$
\left(x+\frac{b}{2}\right)^{2}=\frac{D}{4}
$$

If a is not equal to 1 , the answer is similar: $a x^{2}+b x+c=0$ is equivalent to

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{D}{4 a^{2}}, \quad D=b^{2}-4 a c
$$

Therefore, if $D<0$, there are no solutions; if $D \geq 0$, solutions are

$$
\begin{gather*}
x+\frac{b}{2 a}= \pm \frac{\sqrt{D}}{2 a} \tag{2}\\
x=\frac{-b \pm \sqrt{D}}{2 a}
\end{gather*}
$$

HOMEWORK

1. Solve the following equations. Carefully write all the steps in your argument.
(a) $x^{2}-5 x+5=0$
(c) $2 x(3-x)=1$
(b) $x^{2}=1+x$
(d) $x^{3}+4 x^{2}-45 x=0$
(e) $\frac{x}{x-2}=x-1$
2. In the 12th century, Indian mathematician Bhaskara formulated the following problem. Solve it! Out of a party of monkeys, the square of one fifth of their number diminished by three went into a cave. The one remaining monkey was climbing up a tree. What is the total number of monkeys?
3. (a) Use formula (1) to prove that for any $x, x^{2}+b x+c \geq-D / 4$, with equality only if $x=-b / 2$.
(b) Find the minimal possible value of the expression $x^{2}+4 x+2$
(c) Given a number $a>0$, find the maximal possible value of $x(a-x)$ (the answer will depend on a).
4. If $x+\frac{1}{x}=7$, find $x^{2}+\frac{1}{x^{2}} ; x^{3}+\frac{1}{x^{3}}$.
*5. Consider the sequence $x_{1}=1, x_{2}=\frac{x_{1}}{2}+\frac{1}{x_{1}}, x_{3}=\frac{x_{2}}{2}+\frac{1}{x_{2}} \ldots$. Compute the first several terms; does it seem that the sequence is increasing? decreasing? approaching some value? If so, can you guess this value? [Hint: solve equation $x=\frac{x}{2}+\frac{1}{x}$.]
