MATH 7: HANDOUT 12 QUADRATIC EQUATIONS 1

Quadratic Equations.

Today we discussed how one can approach solving quadratic equation:

$$
a x^{2}+b x+c=0
$$

The method used is called "completing the square". Here is an example how it works:

$$
x^{2}+6 x+2=x^{2}+2 \cdot 3 x+9-7=(x+3)^{2}-7=(x+3+\sqrt{7})(x+3-\sqrt{7})
$$

thus, $x^{2}+6 x+2=0$ if and only if $x+3+\sqrt{7}=0$, which gives $x=-3-\sqrt{7}$, or $x+3-\sqrt{7}=0$, which gives $x=-3+\sqrt{7}$.

Note that in solving such equations we utilize the following important formulas we talked about earlier:

$$
\begin{aligned}
(x+a)^{2} & =x^{2}+2 a x+a^{2} \\
(x-a)^{2} & =x^{2}-2 a x+a^{2} \\
a^{2}-b^{2} & =(a-b)(a+b)
\end{aligned}
$$

Homework

1. Solve the equation $(x-1)^{2}=6$
2. Solve the following equations. Carefully write all the steps in your argument.
(a) $x^{2}-6 x+5=0$
(d) $x^{2}+10 x+16=0$
(g) $x^{2}+3 x+1=0$
(b) $x^{2}-5 x+5=0$
(e) $x^{2}+8 x+16=0$
(h) $x^{3}+4 x^{2}-45 x=0$
(c) $x^{2}=1+x$
(f) $x^{2}-7 x+11=0$
3. Indian mathematicians were aware of the quadratic formula for solving quadratic equations. Can you solve the following problem by the 9th century mathematician Mahāvira?

One-third of a herd of elephants and three times the square root of the remaining part of the herd were seen on a mountain slope; and in a lake was seen a male elephant along with three female elephants constituting the ultimate remainder. How many were the elephants here?

