MATH 7: HANDOUT 5 RIGHT TRIANGLES AND PYTHAGOREAN THEOREM

Pythagorean Theorem

In a right triangle with legs a and b, and hypotenuse c, the square of the hypotenuse is the sum of squares of each leg. $c^{2}=a^{2}+b^{2}$. The converse is also true, if the three sides of a triangle satisfy $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle. Some Pythagorean triples are: $(3,4,5),(5,12,13),(7,24,25),(8.15,17),(9,40,41)$, (11,60,61), $(20,21,29)$.

To generate such Pythagorean triples, choose two positive integers a and b. Then plug the values into the sides as shown on the first picture:
45°

30°

Try to figure out why the sides of this triangle satisfy the Pythagoras' Theorem!
45-45-90 Triangle: If one of the anglesin a right triangle is 45°, the other angle is also 45°, and two of its legs are equal. If the length of a leg is a, the hypothenuse is $a \sqrt{2}$.

30-60-90 Triangle: If one of the angles in a right triangle is 30°, the other angle is 60°. Such triangle is a half of the equilateral triangle. That means that if the hypothenuse is equal to a, its smaller leg is equal to the half of the hypothenuse, i.e. $\frac{a}{2}$. Then we can find the other leg from the Pythagoras' Theorem, and it will be equal to $\frac{a \sqrt{3}}{2}$.

Homework

1. Come up with 5 different triplets of numbers that satisfy Pythagorean theorem.
2. What is the altitude and area of an equilateral triangle of side length 4 ?
3. What is the area and diagonal length of a square with side length 4 ?
4. A regular hexagon is inscribed in a circle of radius 6 . What is the area of the hexagon?
5. What is the diagonal of a cube of side length 2 ?
6. What is the height of a stack of 3 congruent circles of radius 3 cm ?

[Hint: Consider the equilateral triangle formed by connecting the center of the circles]
7. In a trapezoid ABCD with bases AD and $\mathrm{BC}, \angle A=90^{\circ}$, and $\angle D=45^{\circ}$. It is also known that $A B=10$ cm , and $A D=3 B C$. Find the area of the trapezoid.
8. In a right triangle $A B C, B C$ is the hypotenuse. Draw $A D$ perpendicular to $B C$, where D is on $B C$. The length of $B C=13$, and $A B=5$. What is the length of $A D$?
9. What is the area of a regular hexagon whose side is 5 cm ?
10. Rationalize the denominator:
(a) $\frac{1}{1+\sqrt{5}}$
(c) $\frac{1}{4 \sqrt{3}+1}$
(b) $\frac{1}{1-2 \sqrt{3}}$
(d) $\frac{2}{2 \sqrt{2}-1}$
