MATH 7: HANDOUT 4 ALGEBRAIC EXPRESSIONS AND IDENTITIES

MAIN ALGEBRAIC IDENTITIES

Here is a list of the main algebraic identities we discussed:

1.
$$(ab)^n = a^n b^n$$

4.
$$(a-b)^2 = a^2 - 2ab + b^2$$

5. $a^2 - b^2 = (a-b)(a+b)$

2.
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

5.
$$a^2 - b^2 = (a - b)(a + b)$$

2.
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

3. $(a+b)^2 = a^2 + 2ab + b^2$

Replacing in the last equality a by \sqrt{a} , b by \sqrt{b} , we get

$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = a - b$$

which is very helpful in simplifying expressions with roots, for example:

$$\frac{1}{\sqrt{2}+1} = \frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1$$

We also talked about the formulas for the third power (cube) of the sum and difference:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^2 - 3a^2b + 3ab^2 - b^3$$

There are also formulas for a difference of two cubes and for a sum of two cubes. Notice that we did not have a formula for the sum of two squares!!!

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

We also discussed solving simple equations: linear equation (i.e., equation of the form ax + b = 0, with a, bsome numbers, and x the unknown) and equation where the left hand side is factored as product of linear factors, such as (x-2)(x+3) = 0.

1. Simplify

(a)
$$\frac{42^2}{6^2} =$$

(a)
$$\frac{42^2}{6^2} =$$

(b) $\frac{6^3 \times 6^4}{2^3 \times 3^4} =$

(c)
$$(2^{-3} \times 2^7)^2 =$$

(c)
$$(2^{-3} \times 2^7)^2 =$$

(d) $\frac{3^2 \times 6^{-3}}{10^{-3} \times 5^2} =$

2. Simplify

(a)
$$\frac{a}{2} + \frac{b}{4} =$$

(a)
$$\frac{a}{2} + \frac{b}{4} =$$

(b) $\frac{1}{a} + \frac{1}{b} =$

(c)
$$\frac{3}{x} + \frac{5}{xy} + \frac{5}{3a} =$$

3. Using algebraic identities calculate

(a)
$$299^2 + 598 + 1 =$$

(b) $199^2 =$

(b)
$$199^2 =$$

(c)
$$51^2 - 102 + 1 =$$

4. Expand

(a)
$$(4a-b)^2 =$$

(b)
$$(a+9)(a-9) =$$

(c) $(3a-2b)^2 =$

(c)
$$(3a-2b)^2 =$$

5. Factor

(a)
$$ab + ac =$$

(b)
$$3a(a+1) + 2(a+1) =$$

(c) $36a^2 - 49 =$

(c)
$$36a^2 - 49 =$$

(d)
$$a^9 - 27$$

6. Find expansions of $(a + b)^4$, $(a - b)^4$ using the previous results.

7. Write each of the following expressions in the form $a + b\sqrt{3}$, with rational a, b:

(a)
$$(1+\sqrt{3})^2$$

(b)
$$(1+\sqrt{3})^3$$

(a)
$$(1+\sqrt{3})^2$$

(b) $(1+\sqrt{3})^3$
(c) $\frac{1}{1-2\sqrt{3}}$

(d)
$$\frac{1+\sqrt{3}}{1-\sqrt{3}}$$

(e) $\frac{1+2\sqrt{3}}{\sqrt{3}}$

(e)
$$\frac{1+2\sqrt{3}}{\sqrt{3}}$$