MATH 7: HANDOUT 4 ALGEBRAIC EXPRESSIONS AND IDENTITIES

Main Algebraic Identities

Here is a list of the main algebraic identities we discussed:

1. $(a b)^{n}=a^{n} b^{n}$
2. $\sqrt{a b}=\sqrt{a} \sqrt{b}$
3. $(a+b)^{2}=a^{2}+2 a b+b^{2}$
4. $(a-b)^{2}=a^{2}-2 a b+b^{2}$
5. $a^{2}-b^{2}=(a-b)(a+b)$

Replacing in the last equality a by \sqrt{a}, b by \sqrt{b}, we get

$$
(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})=a-b
$$

which is very helpful in simplifying expressions with roots, for example:

$$
\frac{1}{\sqrt{2}+1}=\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1
$$

We also talked about the formulas for the third power (cube) of the sum and difference:

$$
\begin{aligned}
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{3}=a^{2}-3 a^{2} b+3 a b^{2}-b^{3}
\end{aligned}
$$

There are also formulas for a difference of two cubes and for a sum of two cubes. Notice that we did not have a formula for the sum of two squares!!!

$$
\begin{aligned}
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

We also discussed solving simple equations: linear equation (i.e., equation of the form $a x+b=0$, with a, b some numbers, and x the unknown) and equation where the left hand side is factored as product of linear factors, such as $(x-2)(x+3)=0$.

1. Simplify
(a) $\frac{42^{2}}{6^{2}}=$
(c) $\left(2^{-3} \times 2^{7}\right)^{2}=$
(b) $\frac{6^{3} \times 6^{4}}{2^{3} \times 3^{4}}=$
(d) $\frac{3^{2} \times 6^{-3}}{10^{-3} \times 5^{2}}=$
2. Simplify
(a) $\frac{a}{2}+\frac{b}{4}=$
(c) $\frac{3}{x}+\frac{5}{x y}+\frac{5}{3 a}=$
(b) $\frac{1}{a}+\frac{1}{b}=$
3. Using algebraic identities calculate
(a) $299^{2}+598+1=$
(b) $199^{2}=$
(c) $51^{2}-102+1=$
4. Expand
(a) $(4 a-b)^{2}=$
(b) $(a+9)(a-9)=$
(c) $(3 a-2 b)^{2}=$
5. Factor
(a) $a b+a c=$
(b) $3 a(a+1)+2(a+1)=$
(c) $36 a^{2}-49=$
(d) $a^{9}-27$
6. Find expansions of $(a+b)^{4},(a-b)^{4}$ using the previous results.
7. Write each of the following expressions in the form $a+b \sqrt{3}$, with rational a, b :
(a) $(1+\sqrt{3})^{2}$
(b) $(1+\sqrt{3})^{3}$
(d) $\frac{1+\sqrt{3}}{1-\sqrt{3}}$
(c) $\frac{1}{1-2 \sqrt{3}}$
(e) $\frac{1+2 \sqrt{3}}{\sqrt{3}}$
