MATH 7

Trigonometry 2, Law of sines.

1. Definition for sin and cos of an angle

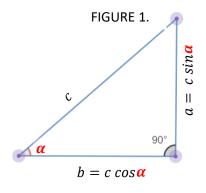
In general, for a right-angle triangle, the $\sin \alpha$ and $\cos \alpha$ of the angle are defined as:

$$\sin(\alpha) = \frac{\text{opposite side}}{\text{hypothenuse}} = \frac{a}{c}, \quad \cos(\alpha) = \frac{\text{adjacent side}}{\text{hypothenuse}} = \frac{b}{c}$$

2. Definition of tangent of an angle

Now we can also define the 3rd trigonometric ratio:

$$\tan (\alpha) = \frac{\sin (\alpha)}{\cos (\alpha)} = \frac{\text{opposite side/hypothenuse}}{\text{adjacent side/hypothenuse}} = \frac{a}{b}$$



1

Example: Consider the angle a in the following triangles:

$$\sin (\alpha) = \frac{\text{opposite side}}{\text{hypothenuse}} = \frac{4}{5} = \frac{8}{10} = \frac{12}{15}$$

$$\cos{(\alpha)} = \frac{\text{adjacent side}}{\text{hypothenuse}} = \frac{3}{5} = \frac{6}{10} = \frac{9}{15}$$

$$\tan (\alpha) = \frac{\text{opposite side}}{\text{adjacent side}} = \frac{4}{3} = \frac{8}{6} = \frac{12}{9}$$

3. Table with values for trigonometric functions

Function	Notation	Definition	00	30 ⁰	45 ⁰	60 ⁰	90°
sine	$sin(\alpha)$	opposite side hypothenuse	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosine	cos(<mark>α</mark>)	adjacent side hypothenuse	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	$tan(\alpha)$	opposite side adjacent side	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

4. Trigonometric identities and the law of sines

The most prominent trigonometric identity: $\sin^2 \alpha + \cos^2 \alpha = 1$

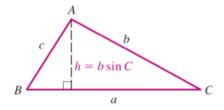
Proof: Pythagoras theorem for Fig1 gives $a^2 + b^2 = c^2$; $(c \sin(\alpha))^2 + (c \cos(\alpha))^2 = c^2$; then divide both sides by c^2 to obtain the identity.

The law of sines: Given a triangle \triangle ABC with sides a, b, and c, the following is always true:

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

Proof: To see why the Law of Sines is true, refer to the figure. The height of the triangle $h = b \sin(C)$, and therefore the area is: $S = \frac{1}{2}a \times b \sin(C)$. Similarly, $h = c \sin(A)$ and $S = \frac{1}{2}a \times c \sin(B)$. Constructing a height towards side b, $S = \frac{1}{2}b \times c \sin(A)$. Thus, $bc \sin(A) = ac \sin(B) = ab \sin(C)$. Divide by abc, to get the law.



Homework problems

All angles are measured in degrees.

- 1. If a right triangle $\triangle ABC$ has sides $AB=3\times\sqrt{3}$ and BC=9, and side AC is the hypotenuse, find all 3 angles of the triangle.
- 2. The area of a right triangle is 36 square meters. The legs of the triangle have the ratio of 2 : 9. Find the hypotenuse of the triangle.
- 3. In a triangle \triangle ABC, we have < A = 40°; < B = 60°, and AB = 2 cm. What is the remaining angle and side lengths? (Hint: Use Law of sines)
- **4.** In an isosceles triangle, the angle between the equal sides is equal to 30°, and the height is 8. Find the sides of the triangle.
- 5. A right triangle \triangle ABC is positioned such that A is at the origin, B is in the 1st quadrant (coordinates Bx > 0 and By > 0) and C is on the positive horizontal axis (Cx > 0 and Cy = 0). If length of side AB is 1, and AB makes a 35° angle with positive x-axis, what are the coordinates of B?
- 6. Consider a parallelogram ABCD with AB = 10, AD = 4 and < BAD = 50°. Find the length of diagonal AC. (Hint: make ΔACM , where < M is 90° and point M is on the same line as CD)
- 7. A regular heptagon (7 sides) is inscribed into a circle of radius 1.
 - a. What is the perimeter of the heptagon?
 - b. What is the area of the heptagon?
- 8. In the trapezoid ABCD, AD = 5 cm, AB = 2 cm, and < A = < D = 70° . Find the length BC and the diagonals. [You can use: $\sin(70^{\circ}) \approx 0.94$; $\cos(70^{\circ}) \approx 0.34$.]

