MATH 7
 HANDOUT 15: PARABOLA

Graphs of $y=|x|$ AND $y=x^{2}$
The figure below shows graphs of functions $y=|x|$ and $y=x^{2}$; the latter graph is called a parabola.

Transformations of graphs

- Graph of function $y=f(x+a)$ is obtained from graph of $y=f(x)$ by shifting horizontally by a units to the left; for example, graph of $y=(x+1)^{2}$ is parabola with vertex at $(-1,0)$.
- Graph of function $y=f(x)+k$ is obtained from graph of $y=f(x)$ by shifting vertically by k units up; for example, graph of $y=x^{2}+1$ is parabola with vertex at $(0,1)$.
- Finally, graph of $y=k f(x)$ is obtained from graph of $y=f(x)$ by rescaling vertically by factor of k; if k is negative, it means flip upside down and then rescale by factor of $|k|$.
Combining these results, we can sketch the graph of any quadratic function, which will also be a parabola. To sketch it, we need to complete the square, writing

$$
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a}=a(x-h)^{2}+k, \quad h=-\frac{b}{2 a}, \quad k=-\frac{b^{2}-4 a c}{4 a}
$$

For example: $x^{2}+x=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}$
The result will be a parabola obtained by stretching the usual parabola vertically by factor a (if $a<0$, this means flipping it upside down and then stretching by $|a|$) and then moving it so that the vertex will be at point (h, k),

In particular, the branches go up if $a>0$ and down if $a<0$.

1. Graph of a Circle

Given the radius r, center $O\left(x_{0}, y_{0}\right)$ of a circle, the equation of a circle is:
$\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$
For example if the radius of a circle is 5 and the circle is centered in $O(1,2)$, then $x_{0}=1, y_{0}=2$ and the equation is $(x-1)^{2}+(y-2)^{2}=25$

Homework

1. For what values of a does the polynomial $x^{2}+a x+9$ have no roots? exactly one root? two roots?
2. Sketch the graphs of the folowing functions and relations:
(a) $x+y=4$
(b) $y=|x-4|$
(c) $x^{2}+4 x+y^{2}-4 y=0$
(d) $y=|5-x|$
(e) $y=|x+1|+|x-1|$
(f) $y=x^{2}-x$
(g) $y=\left|x^{2}-x\right|$
(h) $y=x^{2}-5 x+6$
(i) $y=-2 x^{2}+8 x+6$
3. Solve the following equations and inequalities
(a) $x^{2}-x+6 \geq 0$
(b) $\frac{2 x+1}{x-5} \leq 0$
(c) $x^{4}-3 x^{2}+8=0$
(d) $x(x-2)(x+18)>0$
4. Find all intersection points of parabola $y=x^{2}$ and the circle with radius $\sqrt{6}$ and center at $(0,4)$.
