MATH 7

HANDOUT 14: VIETA FORMULAS AND QUADRATIC INEQUALITIES

A polynomial has the general form $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}$, where $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$ are called coefficients. Examples of polynomials are: $x^{5}+2 x^{3}+x+5$ or $2 x^{3}+5 x^{2}+3 x+1$. Notice that a quadratic is a polynomial where $n=2: p(x)=a_{2} x^{2}+a_{1} x+a_{0}$

Vieta formulas

If a polynomial $p(x)$ has a root r (i.e., if $p(r)=0$), then $p(x)$ is divisible by $(x-r)$, i.e. $p(x)=(x-r) q(x)$ for some polynomial $q(x)$. In particular, if x_{1}, x_{2} are roots of quadratic polynomial $a x^{2}+b x+c$, then $a x^{2}+b x+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)$.

If we carry out the multiplication, we get $a x^{2}+b x+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)=a\left(x^{2}-x x_{2}-x x_{1}+x_{1} x_{2}\right)=$ $a\left(x^{2}-x\left(x_{1}+x_{2}\right)+x_{1} x_{2}\right)$ and

$$
\begin{aligned}
x_{1}+x_{2} & =\frac{-b}{a} \\
x_{1} x_{2} & =\frac{c}{a}
\end{aligned}
$$

In particular, if $a=1$, then

$$
\begin{aligned}
x_{1}+x_{2} & =-b \\
x_{1} x_{2} & =c
\end{aligned}
$$

(Vieta formulas).

Solving polynomial inequalities

We discussed the general rule for solving polynomial inequalities:

- Find the roots and factor your polynomial, writing it in the form $p(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ (for polynomial of degree more than 2 , you would have more factors).
- Roots x_{1}, x_{2}, \ldots divide the real line into intervals; define the sign of each factor and the product on each of the intervals.

Homework

1. Can you guess an analog of Vieta formulas for equation of degree 3: if x_{1}, x_{2}, x_{3} are roots of an equation $x^{3}+b x^{2}+c x+d$, then what is the relation between b, c, d and x_{1}, x_{2}, x_{3} ?
2. Let x_{1}, x_{2} be roots of equation $x^{2}+5 x-7=0$. Find
(a) $x_{1}^{2}+x_{2}^{2}$
(b) $\left(x_{1}-x_{2}\right)^{2}$
(c) $\frac{1}{x_{1}}+\frac{1}{x_{2}}$
(d) $x_{1}^{3}+x_{2}^{3}$
(hint for part (d): compute first $\left(x_{1}+x_{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)$)
*3. Prove the statement we used in class: if a polynomial $p(x)$ has root r (i.e., if $p(r)=0$), then $p(x)$ is divisible by $(x-r)$, i.e. $p(x)=(x-r) q(x)$ for some polynomial $q(x)$.
3. Solve the equation $x^{4}-3 x^{2}+2=0$.
4. Solve the following equations and inequalities:
(a) $x^{2}-5 x+6>0$
(b) $x^{2}<1+x$
(c) $\frac{x+1}{x-2}>0$
(d) $x(x-5)(x+7)<0$
(e) $\sqrt{2 x+1}=x$
(f) $\frac{2 x+1}{x-3}>1$
5. (a) Show that for any $a, b \geq 0$, one has $\frac{a+b}{2} \geq \sqrt{a b}$. (The left hand side is usually called the arithmetic mean of a, b; the right hand side is called the geometric mean of a, b.)
(b) Prove that for any $a>0$, we have $a+\frac{1}{a} \geq 2$, with equality only when $a=1$.
*7. Solve equation $x^{4}-5 x^{3}+6 x^{2}-5 x+1=0$. [Hint: divide by x^{2} and try to rewrite as an equation in $y=x+(1 / x)$. The same trick works for any symmetric equation, in which coefficient of x^{4} is the same as the constant term, and coefficient of x^{3} is the same as coef. of x.]
