MATH 7 HANDOUT 13: QUADRATIC EQUATION

Material covered today

Today we discussed how one solves the quadratic equation:

$$ax^2 + bx + c = 0$$

using two methods: completing the square and using the quadratic formula.

Completing the Square

The first method used is called "completing the square". Here is an example how it works:

$$x^{2} + 6x + 2 = x^{2} + 2 \cdot 3x + 9 - 7 = (x+3)^{2} - 7 = (x+3+\sqrt{7})(x+3-\sqrt{7})$$

thus, $x^2 + 6x + 2 = 0$ if and only if $x + 3 + \sqrt{7} = 0$ or $x + 3 - \sqrt{7} = 0$, which gives $x = -3 - \sqrt{7}$, or $x = -3 + \sqrt{7}$.

The same trick works in general: if a = 1, then

(1)
$$x^{2} + bx + c = x^{2} + 2\frac{b}{2}x + c = \left(x^{2} + 2\frac{b}{2}x + \frac{b^{2}}{2^{2}}\right) - \frac{b^{2}}{2^{2}} + c$$
$$= \left(x + \frac{b}{2}\right)^{2} - \frac{b^{2} - 4c}{4} = \left(x + \frac{b}{2}\right)^{2} - \frac{D}{4}$$

where $D = b^2 - 4c$.

Thus, $x^2 + bx + c = 0$ is equivalent to

$$\left(x + \frac{b}{2}\right)^2 = \frac{D}{4}$$

If a is not equal to 1, the answer is similar: $ax^2 + bx + c = 0$, divide by a, complete the square and the answer is:

$$\left(x + \frac{b}{2a}\right)^2 = \frac{D}{4a^2}, \qquad D = b^2 - 4ac$$

Therefore, if D < 0, there are no solutions; if $D \ge 0$, solutions are

(2)
$$\begin{aligned} x + \frac{b}{2a} &= \pm \frac{\sqrt{D}}{2a} \\ x &= \frac{-b \pm \sqrt{D}}{2a} \end{aligned}$$

Use the quadratic formula

Given the quadratic equation:

$ax^2 + bx + c = 0$

you can use the result from the previous section and use the formula directly to find the two roots:

(3)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The expression that is under the square root is $b^2 - 4ac$. This expression is also called discriminant $D = b^2 - 4ac$. To determine if the quadratic has solutions check the value of the discriminant D: D > 0 - the quadratic equation has 2 solutions

D = 0 - the quadratic equation has 1 solution

D < 0 - the quadratic equation has no real solutions

HOMEWORK

- 1. Convert the following equations to standard form (open the brackets). Determine the coefficients a, b, and c. Do not solve the equation!
 - (a) 2(x-3)(x-1) = 0
 - (b) $(x-2)^2 + (2x+3)^2 = 13 4x$
 - (c) (x-4)(x+4) = 1
- 2. Solve the following quadratic equations by factoring.
 - (a) $3x^2 2x = 0$ (b) $5x^2 16 = 0$

 - (c) $x^2 24 = 1$
 - (d) 3(x-1)(x+2) = 0
- 3. Solve the following equations by using the quadratic formula.
 - (a) $x^2 11x + 10 = 0$
 - (b) $4y^2 15y + 11 = 0$
- 4. Complete the square and find the solutions for the following equations:
 - (a) $x^2 + 4x + 3 = 0$
 - (b) $y^2 + 4y 5 = 0$
- 5. Solve the following equations. Carefully write all the steps in your argument.

(a)
$$x^2 - 5x + 5 = 0$$
 (b) $\frac{x}{x-2} = x - 1$ (c) $x^2 = 1 + x$
(d) $2x(3-x) = 1$ (e) $x^3 + 4x^2 - 45x = 0$

- 6. The values 3 and 4 satisfy the equation: $x^2 + Ax + B = 0$, where A and B are constants. What are A and B?
- 7. If $x + \frac{1}{x} = 7$, find $x^2 + \frac{1}{x^2}$; $x^3 + \frac{1}{x^3}$.