Math 7: Handout 7
 Arithmetic Sequences.

Arithmetic Sequences

A sequence of numbers is an arithmetic sequence or arithmetic progression if the difference between consecutive terms is the same number, the common difference or d.
Example: The sequence $1,5,9,13,17, \ldots$ is an arithmetic sequence because the difference between consecutive terms is $d=4$. We can also find the n-th term if we know the 1st term and d ?
Example: What is a_{100} in the example above?

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=a_{1}+d=1+4=5 \\
& a_{3}=a_{2}+d=\left(a_{1}+d\right)+d=a_{1}+2 d=(1+4)+4=1+2 \times 4=9 \\
& a_{4}=a_{3}+d=\left(a_{2}+d\right)+d=\left(\left(a_{1}+d\right)+d\right)+d=a_{1}+3 d=1+3 \times 4=13
\end{aligned}
$$

The pattern is:

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1)_{d} \\
a_{100} & =a_{1}+99 d=1+99 \times 4=397
\end{aligned}
$$

Properties of an Arithmetic Sequence

A useful property of an arithmetic sequence is that any term is the arithmetic mean of its neighbors:

$$
a_{n}=\frac{a_{n-1}+a_{n+1}}{2}
$$

Proof:

$$
\begin{aligned}
& a_{n}=a_{n-1}+d \\
& a_{n}=a_{n+1}-d
\end{aligned}
$$

Adding these two equalities gives us:

$$
2 a_{n}=a_{n-1}+a_{n+1}
$$

from where we can get what we need.
Another property of arithmetic sequences is that we can find the common difference d if we know any two terms a_{m} and a_{n} :

$$
d=\frac{a_{m}-a_{n}}{m-n}
$$

Sum of an Arithmetic Sequence

$$
S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=n \times \frac{a_{1}+a_{n}}{2}
$$

Proof: To prove this, we write the sum in 2 ways, in increasing and decreasing order:

$$
\begin{aligned}
& S_{n}=a_{1}+a_{2}+\cdots+a_{n} \\
& S_{n}=a_{n}+a_{n-1}+\cdots+a_{1}
\end{aligned}
$$

Adding these two expressions up and noticing that $a_{1}+a_{n}=a_{2}+a_{n-1}=a_{3}+a_{n-2}=\ldots$ we get:

$$
\begin{aligned}
2 S_{n} & =\left(a_{1}+a_{n}\right) \times n \\
S_{n} & =n \times \frac{a_{1}+a_{n}}{2}
\end{aligned}
$$

Homework

1. Write the first 5 terms of an arithmetic sequence if $a_{1}=7$ and $d=2$.
2. What are the first 2 terms for the sequence

$$
a_{1}, a_{2},-9,-2,5, \ldots \text { ? }
$$

3. $a_{10}=131$ and $d=12$. What is a_{1} ?
4. $a_{5}=27$ and $a_{27}=60$. Find the first term a_{1} and the common difference d.
5. Find the common difference d in an arithmetic sequence if the 9 -th term is 18 and the 11 -th term is 44 .
6. In the arithmetic progression $5,17,29,41, \ldots$ what term has a value of 497 ?
7. Find the sum of the first 10 terms for the series: $4,7,10,13, \ldots$
8. Find the sum of the first 1000 odd numbers.
9. Find the sum $2+4+\cdots+2018$.
10. In a given arithmetic progression, the first term is 6 , and the 87 -th term is 178 . Find the common difference of this arithmetic progression, and give the value of the first five terms.
11. A triangle has sides of length $3,4,5$. What is the inradius r of the circle inscribed in this triangle? (write the area of the triangle in 2 ways. $\mathrm{A}=\mathrm{rs}$, where s is the semi-perimeter of the triangle).
