30-60-90 TRIANGLE

The right triangle that has an angle of 30° and another of 60° is called a 30-60-90 triangle. You can also think of it as half of an equilateral triangle. The ratio of the sides of the triangle are $1: \sqrt{3}: 2$. The hypotenuse $A B$ is twice the smallest leg $A C$. If $b=1$, then $c=2$ and we can find out a by using Pythagora's theorem $c^{2}=a^{2}+b^{2}=a^{2}+1^{2}=2^{2}, a^{2}=4-1=3, a=\sqrt{3}$

The ratio of the smallest leg to the hypotenuse is always $\frac{b}{c}=\frac{1}{2}$ and the ratio of the larger leg to the hypotenuse is always $\frac{a}{c}=\frac{\sqrt{3}}{2}$ for this type of triangle. We will revisit these ratios when we learn trigonometry.

Don't try to approximate a square root unless the problem explicitly asks you to. Same goes for π in some geometry problems. Very often the square root or π cancels and if you use decimals, you end up doing more work without getting the exact answer.

In an equilateral triangle of side length a, the altitude is $h=\frac{a \sqrt{3}}{2}$.

> 45-45-90 TRIANGLE

You can think of this right triangle also as being half a square. In this triangle, the base angles are 45° both, so this is an isosceles triangle and $a=b$. The ratio of the sides are $1: 1: \sqrt{2}$. Let's take $a=b=1$, then we could use Pythagora's theorem to find side c : $c^{2}=a^{2}+b^{2}=1^{2}+1^{2}=2$, $c=\sqrt{2}$

In a square of side length s, the length of the diagonal is $s \sqrt{2}$.

HOMEWORK

1. What is the altitude and area of an equilateral triangle of side length 4 ?
2. What is the area and diagonal length of a square with side length 4 ?
3. A regular hexagon is inscribed in a circle of radius 6 . What is the area of the hexagon?
4. A regular hexagon is inscribed in a circle of radius R. What is the area inside of the circle and outside the hexagon?
5. What is the diagonal of a cube of side length 2 ?
6. What is the height of a stack of 3 congruent circles of radius 3 cm ?

(Hint: Consider the equilateral triangle formed by connecting the center of the circles)
7. In the previous problem, what is the shaded area?
8. Rationalize the denominator:
(a) $\frac{1}{1+\sqrt{5}}$
(c) $\frac{1}{4 \sqrt{3}+1}$
(b) $\frac{1}{1-2 \sqrt{3}}$
(d) $\frac{2}{2 \sqrt{2}-1}$
