MATH 7: HANDOUT 5 RATIONALIZING THE DENOMINATOR

Announcement: Math Kangaroo registration is now open. Please check the instructions on our main webpage www.schoolnova.org.

RATIONALIZING THE DENOMINATOR

To rationalize the denominator means that if there is a radical in the denominator you want to eliminate it. In case of expressions of the form $a + \sqrt{b}$ or $a - \sqrt{b}$ in the denominator, we could multiply the original fraction with the conjugate of this binomial. The conjugate is the same expression but the sign between the terms is changed (from + to - or from - to +).

Let us take a look at an example: $\frac{2}{3+\sqrt{3}}$ The conjugate of $3+\sqrt{3}$ is $3-\sqrt{3}$.

$$\frac{2}{3+\sqrt{3}} = \frac{2}{3+\sqrt{3}} \cdot \frac{3-\sqrt{3}}{3-\sqrt{3}} = \frac{2(3-\sqrt{3})}{3^2-(\sqrt{3})^2} = \frac{6-2\sqrt{3}}{(9-3)} = \frac{6-2\sqrt{3}}{6} = \frac{3-\sqrt{3}}{3}$$

In general, the conjugate of $a + \sqrt{b}$ is $a - \sqrt{b}$ and the conjugate of $a - \sqrt{b}$ is $a + \sqrt{b}$.

MAIN ALGEBRAIC IDENTITIES

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$a^{2} - b^{2} = (a-b)(a+b)$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

The proofs for the last two identities are given as homework problems.

Homework

1. Rationalize the denominator:

(a)
$$\frac{1}{1+\sqrt{2}}$$

(b) $\frac{1}{1-\sqrt{3}}$
(c) $\frac{1}{1+2\sqrt{3}}$
(d) $\frac{1+\sqrt{3}}{1-\sqrt{3}}$
(e) $\frac{a+b\sqrt{5}}{\sqrt{5}}$
(f) $\frac{\sqrt{p+q}-\sqrt{p-q}}{\sqrt{p+q}+\sqrt{p-q}}$

2. Prove:

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

 $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$

- **3.** Find the expansions of $(a + b)^3$, $(a b)^3$.
- **4.** Simplify:

(a)
$$\sqrt{\frac{65}{14}} \cdot \sqrt{\frac{13}{11}} \cdot \sqrt{\frac{77}{1}}$$
 (c) $\frac{\sqrt{72}}{\sqrt{18}}$
(b) $\sqrt{72}$

- **5.** Expand as sums of powers of *x*:
 - (a) $(3x+4)^2 =$ (c) $(2x-3)^2 =$
 - (b) $(5-2x)^2 =$

6. Factor (i.e., write as a product) the following expressions:

(a) $a^2 - 2a + 1$	(f) $(x-5)^2 - 12(x-5) + 36$
(b) $a^2 + 4ab + 4b^2$	(g) $a^2 - b^2 - 12b - 36$
(c) $16x^2 - 32xy + 16y^2$	(h) $x^4 + 64$ [Hint: add and then subtract $16x^2$.]
(d) $16x^2 - 25$	(i) $x^2 - 7$ [Hint: $7 = (\sqrt{7})^2$.]
(e) $(x-5)^2 - (y-4)^2$	(j) $a^4 - b^4$ [Hint: $a^4 = (a^2)^2$.]

7. Solve the following equations.

(a) $2(x-3) = 4x + 1$	(d) $(x-2)(x+5) = 0$
(b) $(x^2+2)(x-1)=0$	(e) $x^2 - 5x = 0$
(c) $\frac{x-1}{x+4} = \frac{3}{2}$	(f) $x^3 - 5x = 0$

8. Gilda has a bag of marbles. She gives 20% of them to her friend Pedro. Then Gilda gives 10% of what is left to another friend, Ebony. Finally, Gilda gives 25% of what is now left in the bag to her brother Jimmy. What percentage of her original bag of marbles does Gilda have left for herself?