MATH 7: HANDOUT 5

RATIONALIZING THE DENOMINATOR

Announcement: Math Kangaroo registration is now open. Please check the instructions on our main webpage www.schoolnova.org.

Rationalizing the Denominator

To rationalize the denominator means that if there is a radical in the denominator you want to eliminate it. In case of expressions of the form $a+\sqrt{b}$ or $a-\sqrt{b}$ in the denominator, we could multiply the original fraction with the conjugate of this binomial. The conjugate is the same expression but the sign between the terms is changed (from + to - or from - to +).

Let us take a look at an example: $\frac{2}{3+\sqrt{3}}$
The conjugate of $3+\sqrt{3}$ is $3-\sqrt{3}$.
$\frac{2}{3+\sqrt{3}}=\frac{2}{3+\sqrt{3}} \cdot \frac{3-\sqrt{3}}{3-\sqrt{3}}=\frac{2(3-\sqrt{3})}{3^{2}-(\sqrt{3})^{2}}=\frac{6-2 \sqrt{3}}{(9-3)}=\frac{6-2 \sqrt{3}}{6}=\frac{3-\sqrt{3}}{3}$
In general, the conjugate of $a+\sqrt{b}$ is $a-\sqrt{b}$ and the conjugate of $a-\sqrt{b}$ is $a+\sqrt{b}$.

Main Algebraic Identities

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& a^{2}-b^{2}=(a-b)(a+b) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

The proofs for the last two identities are given as homework problems.

Homework

1. Rationalize the denominator:
(a) $\frac{1}{1+\sqrt{2}}$
(d) $\frac{1+\sqrt{3}}{1-\sqrt{3}}$
(b) $\frac{1}{1-\sqrt{3}}$
(e) $\frac{a+b \sqrt{5}}{\sqrt{5}}$
(c) $\frac{1}{1+2 \sqrt{3}}$
(f) $\frac{\sqrt{p+q}-\sqrt{p-q}}{\sqrt{p+q}+\sqrt{p-q}}$
2. Prove:

$$
\begin{aligned}
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

3. Find the expansions of $(a+b)^{3},(a-b)^{3}$.
4. Simplify:
(a) $\sqrt{\frac{65}{14}} \cdot \sqrt{\frac{13}{11}} \cdot \sqrt{\frac{77}{1}}$
(c) $\frac{\sqrt{72}}{\sqrt{18}}$
(b) $\sqrt{72}$
5. Expand as sums of powers of x :
(a) $(3 x+4)^{2}=$
(c) $(2 x-3)^{2}=$
(b) $(5-2 x)^{2}=$
6. Factor (i.e., write as a product) the following expressions:
(a) $a^{2}-2 a+1$
(f) $(x-5)^{2}-12(x-5)+36$
(b) $a^{2}+4 a b+4 b^{2}$
(g) $a^{2}-b^{2}-12 b-36$
(c) $16 x^{2}-32 x y+16 y^{2}$
(h) $x^{4}+64$ [Hint: add and then subtract $16 x^{2}$.]
(d) $16 x^{2}-25$
(i) $x^{2}-7$ [Hint: $7=(\sqrt{7})^{2}$.]
(e) $(x-5)^{2}-(y-4)^{2}$
(j) $a^{4}-b^{4}$ [Hint: $a^{4}=\left(a^{2}\right)^{2}$.]
7. Solve the following equations.
(a) $2(x-3)=4 x+1$
(d) $(x-2)(x+5)=0$
(b) $\left(x^{2}+2\right)(x-1)=0$
(e) $x^{2}-5 x=0$
(c) $\frac{x-1}{x+4}=\frac{3}{2}$
(f) $x^{3}-5 x=0$
8. Gilda has a bag of marbles. She gives 20% of them to her friend Pedro. Then Gilda gives 10% of what is left to another friend, Ebony. Finally, Gilda gives 25% of what is now left in the bag to her brother Jimmy. What percentage of her original bag of marbles does Gilda have left for herself?
