MATH 5 - PREREQUISITES FOR MATH 6

1. Program

- Algebraic expressions. Commutativity, associativity, distributivity.
- Equations. Solving word problems with equations.
- Powers of 2.
- Binary numbers.
- Powers. Negative powers. Scientific notation.
- $a^{2}-b^{2}=(a-b)(a+b)$
- Square roots.
- Pythagorean theorem.
- Basic probability theory: addition rule, complement rule, product rule.
- Geometry: parallel lines and angles (alternate interior, alternate exterior, corresponding).
- Parallelogram, various definitions, properties.
- Congruence tests for triangles (SAS, ASA, SSS).
- Isosceles triangle. Median, bisector, height.
- Trapezoid. Its midline. Area.

2. Homework 2

1. Let $a=2 \cdot 10^{8}, b=10^{5}$. Compute $a^{2} \cdot b, \frac{a}{b}, a^{2} \div b^{3}$.
2. If $a=2^{-13} 3^{9}, b=2^{11} 3^{-7}$, what is the value of $a b$? of a / b ?
3. Write the following numbers using scientific notation.
(a) the distance from Earth to Pluto is $\approx 7,527,000,000 \mathrm{~km}$;
(b) the distance from Earth to the star Sirius is $\approx 81,900,000,000,000 \mathrm{~km}$;
4. Find the following square roots. If you can not find the number exactly, at least say between which two whole numbers the answer is, e.g., between 5 and 6 .
(a) $\sqrt{81}$
(b) $\sqrt{10,000}$
(c) $\sqrt{10^{8}}$
5. If, in a right triangle, one leg has length 1 and the hypotenuse has length 2 , what is the other leg?
6. Simplify: $(\sqrt{17})^{2},(\sqrt{13})^{4},(\sqrt{11})^{3}, \sqrt{2^{4} 3^{6}}, \sqrt{2^{4} 3^{5}}$.
7. A license plate consists of 3 letters, followed by three digits. How many possible license plates are there?
8. We roll two identical dice. What is the probability of getting 1 and 3 ?
9. If we toss a coin 5 times, what is the probability that at least one will be heads?
10. Solve equations:
(a) $\frac{3}{8} x=\frac{1}{3}$
(b) $|2 x-5|=1$
(c) $\frac{(x-2)}{x-1}=3$
11. Show that in a parallelogram, diagonally opposite angles are equal $\angle A=\angle C, \angle B=\angle D$

12. Let $A B C D$ be a parallelogram, and let $B E, C F$ be perpendiculars from B, C to the line $A D$.
(a) Show that triangles $\triangle A B E$ and $\triangle D C F$ are congruent.
(b) Show that the area of parallelogram is equal to height \times base, i.e. $B E \times A D$.

