MATH 5 - PREREQUISITES FOR MATH 6

1. Program

- Algebraic expressions. Commutativity, associativity, distributivity.
- Equations. Solving word problems with equations.
- Powers of 2.
- Binary numbers.
- Powers. Negative powers. Scientific notation.
- $a^{2}-b^{2}=(a-b)(a+b)$
- Square roots.
- Pythagorean theorem.
- Basic probability theory, basic combinatorics.
- Geometry: parallel lines and angles (alternate interior, alternate exterior, corresponding).
- Parallelogram, various definitions, properties.
- Congruence tests for triangles (SAS, ASA, SSS).
- Isosceles triangle. Median, bisector, height.
- Trapezoid. Its midline. Area.

2. Problems

1. Rewrite each of the expressions below in the simplest possible form, by collecting the like terms if possible.
(a) $2 x+7+5 x+2+3 x$
(b) $3 x+9+5 x y+2 x y+3$
(c) $3(2 x-1)+x$
(d) $2 a(a-2)-a(a-1)$
(e) $(2 x-1)(x+1)$
2. An apple cost 9 cents, and an orange 15 cents. Elena bought some apples and oranges, 20 fruit in all, and paid $\$ 2.64$. How many apples and how many oranges did she buy?
3. A boy had a bag of apples. He gave $1 / 2$ of them to his parents, $1 / 5$ to his brother, $1 / 4$ to his sister and the last apple he ate himself. How many apples did he originally have?
4. If you take half my age and add 7 , you get my age 13 years ago. How old am I?
5. Simplify the following expressions
(a) $x+4(1-x)$
(b) $2+5 x-4(3-x)$
(c) $5(x-1)-3(2 x+1)$
6. If you take half my age and add 7 , you get my age 13 years ago. How old am I?
7. Two secretaries, Barbara and Mary, need to type a 100 page document. Barbara can type it in 4 hours; Mary types slower, so it would take her 5 hours to do this. How fast can they type it together if they divide the work between two of them in the most efficient way?
8. Find the sum $1+2+4+\cdots+2^{n}$ (the answer, of course, will depend on n). [Hint: first try computing it for several small values of n : find $1+2$, then $1+2+4$, then $1+2+4+8$. See if you can notice a pattern. After this, try formulating a general rule.]
9. Convert the decimal numbers to binary:
$9,12,24,38,45$
10. Convert the following binary numbers to decimal:

101, 1001, 10110, 11011, 10101
11. Compute $110101_{b}+111011_{b}$ without converting numbers to decimal form.

