MATH 5: HANDOUT 18 CHOOSINGS AND PERMUTATIONS.

Choosing with repetitions, Review

Here are basic combinatorics laws in one place for your convenience:

- Multiplication rule: if there are k ways to choose the first item, and n ways to choose the second, then there are $k \times n$ ways to choose the pair
- If we need to choose k items, each of which can be selected from a list of n, and order matters, repetitions are allowed, then there are n^{k} ways to do this.
- If we need to choose k items, each of which can be selected from a list of n, and order matters, repetitions are not allowed, there are $n(n-1) \ldots(n-k+1)$ ways of doing it (the product has k factors). This number is usually denoted

$$
{ }_{k} P_{n}=n(n-1) \ldots(n-k+1)=\frac{n!}{(n-k)!} .
$$

Typical example: there are ${ }_{10} P_{25}$ ways to seat 10 students in a room with 25 chairs.

- There are $k!=1 \times 2 \times \cdots \times k$ ways to order k items.

Typical example: there are 52 ! ways to shuffle a card deck.

- If we need to choose k items, each of which can be selected from a list of n, and order does not matters, repetitions are not allowed, then there are

$$
{ }_{k} C_{n}=\frac{{ }_{k} P_{n}}{k!}=\frac{n!}{k!(n-k)!}
$$

ways to do this.
Typical examples: there are ${ }_{6} C_{52}$ ways to choose six cards out of a deck of 52 ; if we toss a coin 10 times, there are ${ }_{4} C_{1} 0$ combinations in which we have 4 heads and 6 tails.
Almost all combinatorial problems can be reduced to one of these.

In Class Problems

1. Conor has 12 favorite books.
(a) He wants to put 6 of them in his backpack, and leave 6 at home. How many ways are there for him to do this?

Solutions: ${ }_{6} C_{12}=924$
(b) Now he wants to put some of the books in his backpack and leave the rest at home. How many ways are there to do this? ("Some" means anywhere from 0 to 12)

Solutions: He can put k on in bag and leave $12-k$ at home. Then the number of ways is

$$
\sum_{k=0}^{12}\binom{12}{k}=2^{12}
$$

We can think of this as the total number of $0 / 1$ states of the 12 books, 0 means stay at home 1 means go. This is 2^{12}.
2. Cristina also has 12 books.
(a) She wants to put them on two bookshelves she has, 6 books on one shelf and 6 on the other. How many ways are there for her to do this?
Solutions: ${ }_{6} C_{12} \times 6!^{2}$
(b) She now wants to put 6 books in her backpack, and put the remaining books on the first bookshelf. How many ways are there for her to do this? (Note: for books on the shelf, the order matters; for books in the back pack, it does not.)

Solutions: ${ }_{6} C_{12} \times 6$!
3. How many ways are there to put 10 books on two bookshelves? (The order on each shelf matters!)

Solutions: We can put k on one shelf, and $10-k$ on the other. Then the number of ways is

$$
\sum_{k=0}^{10}\binom{10}{k} k!(10-k)!=10 \times 10!
$$

4. How many "words" (or, rather combinations of letters - we do not care if they are meaningless) one can form by permuting letters in the word "problem"? In the word "paper"? In the word "letter"?

Solutions:

- For "problem", since all letters are distinct, we could have 7 ! total words.
- For "paper", there is one repeated letter. There are ${ }_{2} C_{5}$ ways to place those two letters. Given their placement, there is 3 ! ways to arrange the other letters. In total ${ }_{2} C_{5} \times 3$! $=60$ words. Another way to arrive at the answer is $5!/ 2!=5 * 4 * 3=60$
- For "letter", there are 2 pairs of repeated letters. Thus, there are ${ }_{4} C_{6}=15$ ways to position those, and ${ }_{2} C_{4}=6$ arrangements in each such configuration. Thus in total there are ${ }_{4} C_{6} \times{ }_{2} C_{4} \times 2=180$. Another way to arrive at the answer is $6!/ 2!2!=6 * 5 * 4 * 3 / 2=60$. In general, if you have n objects with r_{1} of one kind, r_{2} of another, \ldots, r_{k} of a k th kind, they can be arranged in

$$
\frac{n!}{r_{1}!r_{2}!\ldots r_{k}!} \quad \text { ways. }
$$

5. You toss a coin 16 times. What is the probability that you have no heads? Exactly one heads? That exactly half are heads?

Solutions: No heads is $\frac{1}{2^{16}}$, exactly one head is $\frac{1}{2^{16}} \times{ }_{1} C_{16}=\frac{1}{2^{16}} \times 2^{4}=\frac{1}{2^{12}}$. Exactly half are heads $\frac{1}{2^{16}} \times{ }_{8} C_{16}=\frac{12870}{2^{16}} \approx 0.2$
6. You roll a die 10 times. What is the probability that all 10 will be sixes? That there will be no sixes? That exactly one will be a six? Exactly two?
Solutions: All 6 s is $\frac{1}{6^{10}} \approx 1.6 \times 10^{-8}$. No 6 s is $\left(\frac{5}{6}\right)^{10} \approx .16$. Exactly 1 is ${ }_{1} C_{6} \times \frac{1}{6}\left(\frac{5}{6}\right)^{9}=\left(\frac{5}{6}\right)^{9} \approx 0.19$. Exactly 2 is ${ }_{2} C_{6} \times\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{8}=15 \times \frac{1}{6^{2}}\left(\frac{5}{6}\right)^{8} \approx 0.096$

