MATH 5

REVIEW

Binary numbers. Powers of 2:

n	0	1	2	3	4	5	6	7	8	9
2 ⁿ	1	2	4	8	16	32	64	128	256	516

Numbers in decimal notation can be presented like this

$$351 = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 1010111111b$$

Square root

Square root of *a* (denoted \sqrt{a}) is a number whose square is equal to a. For example: square root of 25 is 5, because $5^2 = 25$.

$$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = \sqrt{2^2} \cdot \sqrt{8} = 2 \cdot \sqrt{2}$$

 $\sqrt{a^8} = \sqrt{(a^4)^2} = a^4$

Pythagorean Theorem: In a right triangle with legs a, b and hypotenuse c:

$$a^2 + b^2 = c^2$$
 or $c = \sqrt{a^2 + b^2}$

Exponents Properties

1.
$$a^0 = 1$$

2. $a^m \cdot a^n = a^{m+n}$

3.
$$a^m \div a^n = \frac{a^m}{a^n} = a^{m-n}$$

4.
$$(ab)^n = a^n \cdot b^n$$

5.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$6. \quad a^{-n} = \frac{1}{a^n}$$

7.
$$(a^m)^n = a^{m \cdot n}$$

Homework

- 1. Binary numbers:
 - a) Write as binaries: 35, 11, 40
 - b) Write as decimals: 101010, 11100011
- 2. Solve equations:
- a) $\frac{3}{4}(x+8) = 10$
- b) $\frac{1}{2}(x+1) = x-3$
- c) $\frac{1}{2}x + \frac{1}{3}x = x \frac{1}{12}$
- 3. A piece of cable 8-cm long weighs 48 grams. What will a 10-cm length of the same cable weigh?
- 4. The standard card deck has 4 suits (hearts, diamonds, spades, and clubs); each suit has 13 different card values: 2 through 10, jack, queen, king, and ace. If you randomly draw one card, what is the probability of getting

(a) The king or queen of spades

- (b) A non-face card (number 2 through 10)
- (c) Anything but the queen of clubs
- 5. Open parenthesis and simplify:
 - a) 3(a-5) 2(2a-9) =
 - b) 12x 3(4x + 2) =
 - c) a(a+b) + b(a+1) =
- 6. Simplify:

a)
$$\left(\frac{2a^2b^5}{3a^3b^3}\right)^3 =$$

b) $(5z^2 \cdot 2z^3 \cdot z)^2 =$

c)
$$\frac{(-yb)^6}{(yb)^2} =$$

7. Solve equations:

a)
$$\frac{3}{8}x = \frac{18}{3}$$

b)
$$\frac{x-2}{x-1} - 4 = -2$$