Math 5a. Classwork 16.

Theorem. In isosceles triangle the bisector passed to the base (in isosceles triangle the base is the side different from two equal sides) is a median and an altitude as well.

Let the triangle $\triangle A B C$ be an isosceles triangle, such that $A B=B C$, and $B M$ is a bisector. We need to prove that $B M$ is a median and an altitude, which means that $A M=M C$ and angle $\angle B M C$ is a right angle.
$B M$ is a bisector, so $\angle A B M$ and $\angle M B C$, the triangle $\triangle A B M$ is an isosceles triangle, so $A B=B C$ and the segment $M B$ is common side for triangles $\triangle A B M$ and $\triangle M B C$. Based on the Side-Angle-Side criteria, the triangles $\triangle A B M$ and $\triangle M B C$ are congruent. Therefore, $A M=M C$ ($B M$ is a median), angles $\angle A$ and $\angle C$ are congruent. (Isosceles triangle has equal angles adjacent to the base).

$\angle A+\angle B+\angle C=180^{\circ}=2 \angle A+\angle B \Rightarrow 90^{\circ}=\angle A+\frac{1}{2} \angle B$ but for the triangle ABM (as well as for MBC), $\angle A+\frac{1}{2} \angle B+\angle B M A=180^{\circ}$, therefore $\angle B M A=90^{\circ}$ and BM is also an altitude.

SSS (Side-Side-Side): If three pairs of sides of two triangles are equal in length, then the triangles are congruent.

Let $\triangle \mathrm{ABC}$ and $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ be two triangles such that

$$
A C=A^{\prime} C^{\prime}, A C=A^{\prime} C^{\prime}, B C=B^{\prime} C^{\prime} .
$$

It is required to prove that triangles are congruent. Proving this test by superimposing, the same way as we proved the first two tests, turns out to be awkward, because knowing nothing about the measure of angles, we would not be able co conclude from coincidence of two corresponding sides the other side coincide as well. Instead of superimposing, let us apply juxtaposing.

Juxtapose $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ in such a way that their congruent sides $A C$ and $A^{\prime} C^{\prime}$ would coincide and the vertices B and B^{\prime} would lie on the opposite sides of $A^{\prime} C^{\prime}$ (see the picture). Connecting vertices B and B^{\prime} we will get 2 isosceles triangles, $B A B$ ' and
 BCB^{\prime}. In the isosceles triangle angles at the base are congruent, so $\angle A B B^{\prime}=\angle A B^{\prime} B$, and $\angle C B B^{\prime}=\angle C B^{\prime} B$, therefore $\angle A B C=\angle A B^{\prime} C$ and triangle $\triangle A B C$ is congruent to the triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Congruency tests.

- SAS (Side-Angle-Side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then the triangles are congruent.
- SSS (Side-Side-Side): If three pairs of sides of two triangles are equal in length, then the triangles are congruent.
- ASA (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent.

Based in these criteria, we can see that a triangle is defined by either three sides, or by the side and two adjacent angles, or by the two sides and the angle formed by them. And what about another combination of sides and angles? Do three angles define a triangle? Are the two triangles with congruent angles are congruent? No, just see the example on the picture. Two parallel lines l and p intersect two sides of the angle $\angle A$. Two triangles $\triangle A B B^{\prime}$ and $\triangle A C C^{\prime}$ are formed. Angle A is the common angle, angles $\angle A B B^{\prime}$ and $\angle A C C^{\prime}$ are congruent, as well as angles $\angle A B^{\prime} B$ and $\angle A C^{\prime} C$ as the corresponding angles formed by transversal crossing two parallel lines. Triangles $\triangle A B B^{\prime}$ and $\triangle A C C^{\prime}$ are not congruent.

Let's take a look on the AAS combination, two angles and the side, not adjacent to both angles, only to one angle. This case can easy by reduced to ASA criteria, since the third angle is always known.

SSA (two sides and the angle not formed by these two sides) condition is more interesting, since several cases can be considered.

The first case represents the shortest possible second side and the right triangle is formed, second case represents the situation where the second side is bigger than the distance from point B to the ray AC^{\prime}, but smaller then the length of the segment AB . Two triangles are satisfying the condition SSA. The third case shows that if the length of the second side is equal or bigger than the length of the segment AB , the only one triangle satisfy the SSA condition.

Exercise.

1. On one side of an angle $\angle A$, the segments $A B$ and $A C$ are marked, and on the other side the segments $A B^{\prime}=A B$ and $A C^{\prime}=A C$. Prove that the lines $B C^{\prime}$ and $B^{\prime} C$ met on the bisector of the angle $\angle A$.

Given:
$A B^{\prime}=A B, A C^{\prime}=A C, O=B C^{\prime} \cap B^{\prime} C$
Prove: $\angle C A O=\angle O A C^{\prime}$

Statement	Reason	Conclusion
$\begin{aligned} & \triangle A B C^{\prime} \\ & =\triangle A B^{\prime} C \end{aligned}$	because $A C=A C^{\prime}, A B=A B^{\prime}$ and angle A is a common angle	$\begin{aligned} & \angle A C B^{\prime}=\angle A C^{\prime} B \\ & C B^{\prime}=B C^{\prime} \end{aligned}$
$C O=O C^{\prime}$	Because $\angle A C C^{\prime}=\angle A C^{\prime} C$ as angles at the base of the isosceles triangle, $\angle A C B^{\prime}=\angle A C^{\prime} B$ as the corresponding angles of the equal triangles. So the triangle COC' is an isosceles triangle (converse theorem, need to be proved).	$\triangle A O C=\triangle A O C^{\prime} \text { by }$ the SAS test. Therefore $\angle O A C=\angle O A C^{\prime}$ $\overrightarrow{A O} \text { is a bisector. }$

2. Prove that a triangle that has two congruent angles is isosceles.
