Rational numbers.
Positive rational number is a number which can be represented as a ratio of two natural numbers:

$$
a=\frac{p}{q} ; \quad p, q \in N
$$

As we know such number is also called a fraction, p in this fraction is a nominator and q is a denominator. Any natural number can be represented as a fraction with denominator 1 :

$$
b=\frac{b}{1} ; \quad b \in N
$$

Basic property of fraction: nominator and denominator of the fraction can be multiplied by any non-zero number n, resulting the same fraction:

$$
a=\frac{p}{q}=\frac{p \cdot n}{q \cdot n}
$$

In the case that numbers p and q do not have common prime factors, the fraction $\frac{p}{q}$ is irreducible fraction. If $p<q$, the fraction is called "proper fraction", if $p>q$, the fraction is called "improper fraction".

If the denominator of fraction is a power of 10 , this fraction can be represented as a finite decimal, for example,
$\frac{37}{100}=\frac{37}{10^{2}}=0.37, \quad \frac{3}{10}=\frac{3}{10^{1}}=0.3, \quad \frac{12437}{1000}=\frac{12437}{10^{3}}=12,437$

$$
10^{n}=(2 \cdot 5)^{n}=2^{n} \cdot 5^{n}
$$

0.875
$8 \longdiv { 7 . 0 0 0 }$
-6.4
60

- 56

Therefore, any fraction, which denominator is represented by $2^{n} \cdot 5^{m}$ can be written in a form of finite decimal. This fact can be verified with the help of the long division, for example $\frac{7}{8}$ is a proper fraction, using the long division this fraction can be written as a decimal $\frac{7}{8}=0.875$. Indeed,

$$
\frac{7}{8}=\frac{7}{2 \cdot 2 \cdot 2}=\frac{7 \cdot 5 \cdot 5 \cdot 5}{2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5}=\frac{7 \cdot 5^{3}}{2^{3} 5^{3}}=\frac{7 \cdot 125}{(2 \cdot 5)^{3}}=\frac{875}{10^{3}}=\frac{875}{1000}=0.875
$$

Also, any finite decimal can be represented as a fraction with denominator 10^{n}.

$$
\begin{array}{rlrl}
0.375=\frac{375}{1000}=\frac{3}{8}=\frac{3}{2^{3}} ; & 0.065=\frac{65}{1000}=\frac{13 \cdot 5}{5^{3} 2^{3}}=\frac{13}{5^{2} 2^{3}} ; \\
6.72=\frac{672}{100}= & \frac{168}{25} & 0.034=\frac{34}{1000}=\frac{17 \cdot 2}{5^{3} 2^{3}}=\frac{17}{5^{3} 2^{2}} ; \\
& =\frac{168}{5^{2}} ; &
\end{array}
$$

$-\frac{00}{50}$
-49
-28

- 14
$\begin{array}{r}60 \\ -56 \\ \hline\end{array}$

In other words, if the finite decimal is represented as an irreducible fraction, the denominator of this fraction will not have other factors besides 5^{m} and 2^{n}. Converse statement is also true: if the irreducible fraction has denominator which only contains 5^{m} and 2^{n} than the fraction can be written as a finite decimal. (Irreducible fraction can be represented as a finite decimal if and only if it has denominator containing only 5^{m} and 2^{n} as factors.)

If the denominator of the irreducible fraction has a factor different from 2 and 5, the fraction cannot be represented as a finite decimal. If we try to use the long division process, we will get an infinite periodic decimal.

At each step during this division, we will have a remainder. At some point during the process, we will see the remainder which occurred before. Process will start to repeat itself. On the example on the left, $\frac{5}{7}$, after $7,1,4,2,8,5$, remainder 7 appeared again, the fraction $\frac{5}{7}$ can be represented only as an infinite periodic decimal and should be written as $\frac{5}{7}=0 . \overline{714285}$. (Sometimes you can find the periodic infinite decimal written as $0 . \overline{714285}=0$. (714285)).

How we can represent the periodic decimal as a fraction?
Let's take a look on a few examples: $0 . \overline{8}, 2.35 \overline{7}, 0 . \overline{0108}$.

$0 . \overline{8}$.	$x=2.35 \overline{7}$	$0 . \overline{75}$
$x=0 . \overline{8}$	$100 x=235 . \overline{7}$	$x=0 . \overline{0108}$
$10 x=8 . \overline{8}$	$1000 x=2357 . \overline{7}$	$10000 x=108 . \overline{0108}$
$10 x-x=8 . \overline{8}-0 . \overline{8}=8$	$1000 x-100 x=2357 . \overline{7}-235 . \overline{7}$	$10000 x-x=108$
$9 x=8$	$x=\frac{108}{9999}=\frac{12}{1111}$	
$x=\frac{8}{9}$	$x=\frac{2122}{900}=\frac{1061}{450}$	

Now consider $2.4 \overline{0}$ and $2.3 \overline{9}$

$$
\begin{array}{ll}
x=2.4 \overline{0} & 100 x-10 x=240-24 \\
10 x=24 . \overline{0} & x=\frac{240-24}{90}=\frac{216}{90}=2.4 \\
100 x=240 . \overline{0} & \\
& \\
x=2.3 \overline{9} & 100 x-10 x=239-23 \\
10 x=23 . \overline{9} & x=\frac{239-23}{90}=\frac{216}{90}=2.4 \\
100 x=239 . \overline{9} &
\end{array}
$$

Algebraic expression.
Expressions where variables, and/or numbers are added, subtracted, multiplied, and divided.
For example:

$$
2 a ; \quad 3 b+2 ; \quad 3 c^{2}-4 x y^{2}
$$

We can do a lot with algebraic expressions, even so we don't know exact values of variables. First, we always can combine like terms:

$$
2 x+2 y-5+2 x+5 y+6=2 x+2 x+5 y+2 y+6-5=4 x+7 y+1
$$

We can multiply an algebraic expression by a number or a variable:

$$
3 \cdot(1+3 y)=3 \cdot 1+3 \cdot 3 y=3+9 y
$$

In this example the distributive property was used. Using the definition of multiplication we can write:

$$
3 \cdot(1+3 y)=(1+3 y)+(1+3 y)+(1+3 y)=3+3 \cdot y=3+9 y
$$

Another example:

$$
\begin{aligned}
& 5 a(5-5 x)=\underbrace{(5-5 x)+(5-5 x)+\cdots+(5-5 x)}_{5 a \text { times }}=\underbrace{5+5+\cdots+5}_{5 a \text { times }}-\underbrace{5 x-5 x-\cdots-5 x}_{5 a \text { times }} \\
& =\underbrace{5+5+\cdots+5}_{5 a \text { times }}-\underbrace{5 x-5 x-\cdots-5 x}_{5 a \text { times }}=5 a \cdot 5-5 a \cdot 5 x=25 a-25 a x
\end{aligned}
$$

If we need to multiply two expressions

$$
(a+2) \cdot(a+3)
$$

We can use a substitution technic, we will substitute one of the expressions with a variable, for example, instead of $(a+2)$ we can use u.

$$
(a+2)=u
$$

And then we will multiply

$$
u \cdot(a+3)=u \cdot a+3 u
$$

We know, that actually u should not be there, $(a+2)$ should.

$$
u \cdot(a+3)=(a+2) \cdot a+3(a+2)
$$

We know how to multiply an expression by a variable (or number):

$$
\begin{gathered}
(a+2) \cdot a+3(a+2)=a \cdot a+2 a+3 a+3 \cdot 2=a^{2}+5 a+6 \\
(a+2) \cdot(a+3)=a \cdot a+3 a+2 a+3 \cdot 2=a^{2}+5 a+6 \\
(a+2) \cdot(a+3)=a^{2}+5 a+6
\end{gathered}
$$

There are a few very useful products:

$$
(a+b)^{2}=(a+b) \cdot(a+b)=a \cdot a+a \cdot b+b \cdot a+b \cdot b=a^{2}+2 a b+b^{2}
$$

Let's do a few examples:

$$
\begin{aligned}
(2+x)^{2}= & (2+x)(2+x)=2 \cdot 2+2 \cdot x+x \cdot 2+x \cdot x=2^{2}+2 x+2 x+x^{2}=x^{2}+2 \cdot 2 x+4 \\
& =x^{2}+4 x+4
\end{aligned}
$$

$$
\begin{gathered}
(a b+2 y)^{2}=(a b+2 y)(a b+2 y)=a b \cdot a b+a b \cdot 2 y+2 y \cdot a b+2 y \cdot 2 y \\
=a^{2} b^{2}+2 y a b+2 y a b+4 y^{2}=a^{2} b^{2}+4 y a b+4 y^{2} \\
(a-b)(a+b)=a \cdot a+a \cdot b-a \cdot b+b \cdot b=a^{2}-b^{2}
\end{gathered}
$$

Exercises.

1. Evaluate the following using decimals:
a. $0.36+\frac{1}{2}$;
b. $5.8-\frac{3}{4}$;
c. $\frac{2}{5}: 0.001$;
d. $7.2 \cdot \frac{1}{1000}$
2. Evaluate the following using fractions:
a. $\frac{2}{3}+0.6$;
b. $1 \frac{1}{6}-0.5$;
c. $0.3 \cdot \frac{5}{9}$;
d. $\frac{8}{11}: 0.4 ;$
3. Write as a fraction
a. $0 . \overline{5}$,
b. 0.5,
c. $0 . \overline{7}$,
d. 0.7,
e. $0.1 \overline{2}, f .0 . \overline{12}$,
g. 0.12
4. Multiply.
a. $(a+2)(a+2)$;
f. $(a+1)(a+3)$;
b. $(3+y)(y+4)$;
g. $(c+d)(c-2 d) ;$
c. $(3+x)(3-x)$;
h. $(y-2)(3-y)$;
d. $(x-y)(x+y)$;
i. $(x-m)(x-m)$;
e. $(2 a+c)(a+a c)$;
j. $(2 d+3 l)(2 d+3 l)$

