Classwork 7.

Direct and invers proportionality.

Last week we discuss proportions, which involve two equal ratios. But what if there are many equal ratios? For example, if I walk at a constant speed, how does the time of my walk correlate with the distance I've covered?

Fill the table:
My speed is 3 km per hour

t	0.5	1	1.5	2	2.5	3	3.5	4
S								

My speed is 5 km per hour

t	0.5	1	1.5	2	2.5	3	3.5	4
S								

$$
\frac{S}{t}=v
$$

As you can see, if the speed is constant, the ratio of a distance to time is always be the speed.

In other words, $S=5(\mathrm{~km} / \mathrm{h})$ * t (hour), 5 is a constant, and it's called a constant of proportionality. Longer travel \Rightarrow further from the initial point, and the ratio between these two variables will be always the same, distance:time is speed. If the time three time longer, the distance will be three time greater as well. (When the speed is constant of cause). Two variables, distance and time, are dependent from each other, they are in the relation of proportionality.
We can write the relationship between the distance, time, and speed as

$$
S=v \cdot t
$$

Two variables (y and x) are related proportionally if

$$
y=k x ; \quad \frac{y}{x}=k, x \neq 0
$$

We say that y is directly proportional to x, and coefficient of proportionality is k. Another example of direct proportionality is the circumference and the diameter of a circle, π is coefficient.

A notebook costs 3 dollars. How much I need to pay if I buy 3 notebooks, 5,12 ? What variables are used, what is the relationship between them? Can a constant of proportionality be found?

The distance between my home and my work is 20 miles. Let's see, how the time and speed are corelated, if I ride a bike to work:

v	80	40	20	10	5	2	1	0.5	0.1
t									

(

This kind of correlation is called invers proportionality.

Exercises:

1. A squirrel is doing a stock of acorns for winter. Every 20 minutes it brings 2 acorns. How many acorns it will have in 40 minutes? 80 minutes?

Time (t)	20 minutes	40 minutes	80 minutes	2 hours
Number of acorns				

2. Bacteria are dividing every 30 minutes. I want to make yogurt and I put 1 bacterium in a cup of milk. How many bacteria will be there in the milk in 1 hour? in 2 hours? in 3 hours?

Time (t)	0.5 hour	1 hour	2 hours	4 hours
Number of bacteria				

Problems with proportions:

Problem 1. To prepare 6 large pizzas, the cook needs 2.5 kg of flour. How much flour does the cook need to prepare 8 pizzas? We can write the problem as follows:
6 pizzas $\rightarrow 2.5 \mathrm{~kg}$
8 pizzas $\rightarrow x \mathrm{~kg}$
We can create several proportions:

1. How many kilograms of flour are needed to make one pizza:

$$
\frac{2.5 \mathrm{~kg} .}{6}=\frac{x \mathrm{~kg} .}{8}
$$

2. Flour consumption is proportional to the number of pizzas made, so if twice as many pizzas are made, twice as much flour should be used.

$$
\frac{6}{8}=\frac{2.5 \mathrm{~kg}}{x \mathrm{~kg}}
$$

3. How many pizzas can be made with 1 kg of flour?

$$
\frac{6}{2.5 \mathrm{~kg}}=\frac{8}{x \mathrm{~kg} .}
$$

For the first proportion:
$\frac{2.5 \mathrm{~kg} .}{6}=\frac{x \mathrm{~kg} .}{8} ; \quad 8 \cdot 2.5 \mathrm{~kg}=6 \cdot x \mathrm{~kg} . ; \quad x=\frac{8 \cdot 2.5 \mathrm{~kg} .}{6}=\frac{4 \cdot 2.5 \mathrm{~kg}}{3}=\frac{10}{3}=3 \frac{1}{3} \mathrm{~kg}$.

For the second and third:

$$
\begin{gathered}
\frac{6}{8}=\frac{2.5 \mathrm{~kg} \cdot}{x \mathrm{~kg} .} ; \quad 6 \cdot x \mathrm{~kg}=8 \cdot 2.5 \mathrm{~kg} ; \quad x=\frac{8 \cdot 2.5 \mathrm{~kg} \cdot}{6}=\frac{4 \cdot 2.5 \mathrm{~kg}}{3}=\frac{10}{3}=3 \frac{1}{3} \mathrm{~kg} \\
\begin{array}{c}
\frac{6}{2.5 \mathrm{~kg}}=\frac{8}{x \mathrm{~kg} .} ; 6 \cdot x \mathrm{~kg}=8 \cdot 2.5 \mathrm{~kg} ; \quad x=\frac{8 \cdot 2.5 \mathrm{~kg} \cdot}{6}=\frac{4 \cdot 2.5 \mathrm{~kg}}{3}=\frac{10}{3}=3 \frac{1}{3} \mathrm{~kg} \\
6 \text { pizzas } \rightarrow 2.5 \mathrm{~kg} \\
8 \text { pizzas } \rightarrow x \mathrm{~kg}
\end{array}
\end{gathered}
$$

Problem 2. 6 typists working 5 hours a day can type the manuscript of a book in 16 days. How many days will 4 typists take to do the same job, each working 6 hours a day?

$$
\begin{gathered}
6 \text { typists } \cdot 5 \text { hours } \rightarrow 16 \text { days } \\
4 \text { typists } \cdot 6 \text { hours } \rightarrow x \text { days }
\end{gathered}
$$

When writing a proportion, we must be careful to choose the right one: more typists, more hours a day, less time to get the job done.

$$
\frac{6 \cdot 5}{4 \cdot 6} \neq \frac{16}{x} ; \quad \frac{6 \cdot 5}{4 \cdot 6}=\frac{x}{16}
$$

$\frac{5}{4}=\frac{x}{16} ; \quad 4 x=16 \cdot 5 ; \quad x=\frac{16 \cdot 5}{4}=20$ days.

This problem can be solved without writing the proportion. Number of hours of typing for one typist needed to do the job is 16 days $\cdot 6$ typists $\cdot 5$ hour per day should be equal to x days . 4 typists $\cdot 6$ hour per day

$$
16 \cdot 6 \cdot 5=x \cdot 4 \cdot 6 ; \quad x=\frac{16 \cdot 6 \cdot 5}{4 \cdot 6}=20 \text { days }
$$

Exercises:

1. The relationship between two variables is given in the table below. Is this relationship proportional? If so, what is the constant of proportionality?
a.

x	9	15	33	45	66
y	3	5	11	15	22

b.

x	3	2	5	4	6
y	9	4	25	16	36

c.

x	3	2	1	$\frac{1}{3}$	30
y	1	$\frac{3}{2}$	3	9	0.1

2. Are the following variables proportional?
a. Speed and time of movement on a distance of 50 km .
b. Speed and corresponding distance after 2 hours of driving.
c. Price of the 1 notebook and the number of notebooks which can be bought with 24 dollars.
d. Length and the width of the rectangle with the area of $60 \mathrm{~cm}^{2}$.
3. A car travels 60 km during a certain time. How this time will change, if the speed will be increased 3 times?
4. The sorcerer used seaweed and mushrooms in a ratio of 5 to 2 when brewing a potion. How much seaweed does he need if there are only 450 grams of mushrooms?
5. A car travels from one city to another in 13 hours at a speed of $75 \mathrm{~km} / \mathrm{h}$. How long will it take if the car moves at a speed of $52 \mathrm{~km} / \mathrm{h}$?
6. Which of the following formulas describe the direct proportionality, inverse proportionality or neither of the two?

$$
\begin{array}{cll}
P=5.2 b ; & K=\frac{n}{2} ; \quad a=\frac{8}{b} ; \quad M=m: 5 ; \quad G=\frac{1}{4 k} \\
a=8 q+1 ; & c=4: d, \quad 300=v \cdot t ; \quad a b=18 ; \quad S=a^{2}
\end{array}
$$

7. Peter's time of the driving to work usually is 1 hour and 20 minutes. Yesterday was a bad weather and Peter reduced his speed by $10 \mathrm{~km} / \mathrm{h}$ and reached his work in 1.5 hours. What is the distance between Peter's house and his work?
