## Review of the homework 18

1. Divide : Example: Divide 16 in the ratio 1:3. The total number of parts in which the number 16 is divided is 4 (1:3). So each part would be $16: 4=4$. To divide 16 in the ratio $1: 3$ we will take 4 (1 part) and 12 (3 parts). The answer is 4:12.
a) 12 in the ratio $1: 3$
b) 15 in the ratio $2: 3$
c) 48 in the ratio $\frac{1}{3} \div \frac{1}{5}$ (remember that here to convert this type of a ratio into a simple form you have to bring your fractions to a common denominator. Just remember how we divide fractions using common denominator)
d) 100 in the ratio $\frac{1}{2} \div \frac{1}{3}$
2. Represent the following values of speed in $\frac{\mathrm{km}}{\mathrm{h}}$ units and connect to the appropriate pictures.


$$
91.7 \frac{\mathrm{~m}}{\mathrm{~min}}=
$$

$$
1.83 \frac{\mathrm{~km}}{\mathrm{~min}}=
$$



## Factorials and permutations

There are 5 chairs and 5 kids in the room.
In how many ways can kids sit on these chairs?
The first kid can choose any chair. The second kid can choose any of the 4 remaining chairs, the third child has a

© bnpdesignstudio * www.ClipartOf.com/215425 choice between the three chairs, and so on. Therefore, there are $5 \times 4 \times 3 \times 2 \times 1$ ways how all of them can choose their places.

The expression $5 \times 4 \times 3 \times 2 \times 1$, can be written as 5 ! ( 5 factorial)

$$
5 \times 4 \times 3 \times 2 \times 1=5!\quad \text { or } \quad n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1=n!
$$

Write the following expressions as a factorial and vice versa:

Example: $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=7$ !, 4 ! $=4 \times 3 \times 2 \times 1$
$10 \times 9 \times 8 \times \ldots \times 3 \times 2 \times 1=$
$6!=$
$b \times(b-1) \times(b-2) \times \ldots \times 3 \times 2 \times 1=$
$c!=$

1. Simplify the following fractions:
$\frac{5!}{7!}=$

2. How many different ways are there to put 64 books on the shelf?
3. In the restaurant, there are 3 choices of starters, 4 choices of entrees and 5 choices of tasty desserts in the fix price dinner menu. How many different ways are there to fix a dinner for the restaurant's clients?
4. How many two digit numbers can be composed from digits $1,2,3$ without repetition of digits?
5. How many two digit numbers can be composed from digits $1,2,3$, if repetition is allowed?
6. Peter took 5 exams at the end of the year. Grades for exams are $A, B, C, D$. How many different ways are there to fill his report card?
7. There are red and green pencils in a box. How many pencils do you have to take out of the box without seeing them to be sure that you have at least 2 pencils of the same color?
8. If there are pencils of 5 different colors in a box, how many pencils do you have to take out to be sure that you have at least 2 of the same color?
9. There are 10 pairs of red gloves and 10 pairs of black gloves in a box. How many gloves do you have to take out to be sure that you have a pair of gloves that you can wear?

## 1. Geometry.

What is the definition of a circle?

Circumference
Diameter


- The FULL CIRCLE forms a 360 degree angle.
- A half circle or a straight angle is 180 degrees
- A fourth of a circle or a right angle is 90 degrees.


Circle is running along the line. At a starting time point A was the point of contact of the circle and the line. The curve which point A will trace is called cicloide. What line the center of the circle will trace?

Imagine the "square wheel" - a square which is staying on a road. Draw a line traced by the point A (vertex) in a process of "rolling"? The diagonal intersection-O?


