Classwork 8.

Review of Homework 6

 In a zoo there are birds with 2 legs each and mammals with 4 legs each. How many birds and mammals are in the zoo, if they have 6000 legs and 2500 heads altogether? (use substitution)

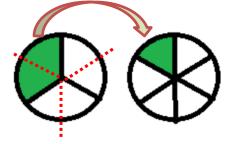
Fractions.

Multiplication of a whole number by a fraction.

 $\frac{2}{3} \times 5 = \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3}$ (we add $\frac{2}{3}$ to itself 5 times)

Of course we remember how to add fractions with the same denominator:

$$\frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = \frac{2+2+2+2+2+2}{3}$$
$$\frac{2+2+2+2+2+2}{3} = \frac{2\times5}{3}$$
$$\frac{2}{3} \times 5 = \frac{2\times5}{3}$$


To multiply fraction by a whole number, multiply the numerator by this number

$$\frac{a}{b} \times c = \frac{a}{b} \times \frac{c}{1} = \frac{a \times c}{b}$$

Multiplication of a fraction by a fraction.

Analogously, $\frac{1}{2} \times \frac{1}{3}$ means $\frac{1}{2} of \frac{1}{3}$. Now, half of 1/3 piece of a disk is 1/6 of a disk

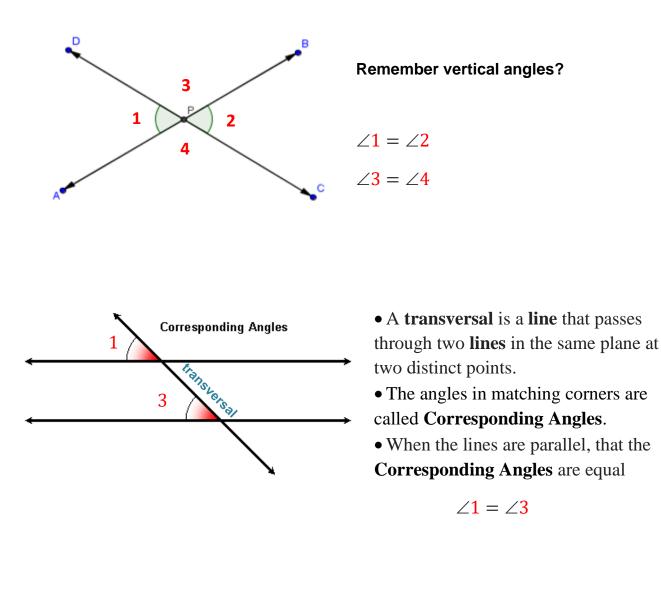
(look at the picture below).

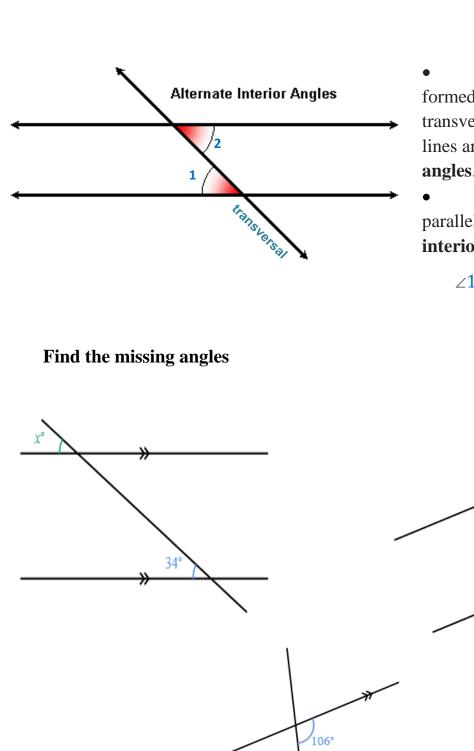
Notice that we could have just multiplied the denominators of $\frac{1}{2}$ and $\frac{1}{3}$.

To multiply fraction by a fraction, multiply the numerators to get the numerator for the answer, multiply denominators to get denominator for the answer.

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \ge c}{b \ge d}$$

Compute:

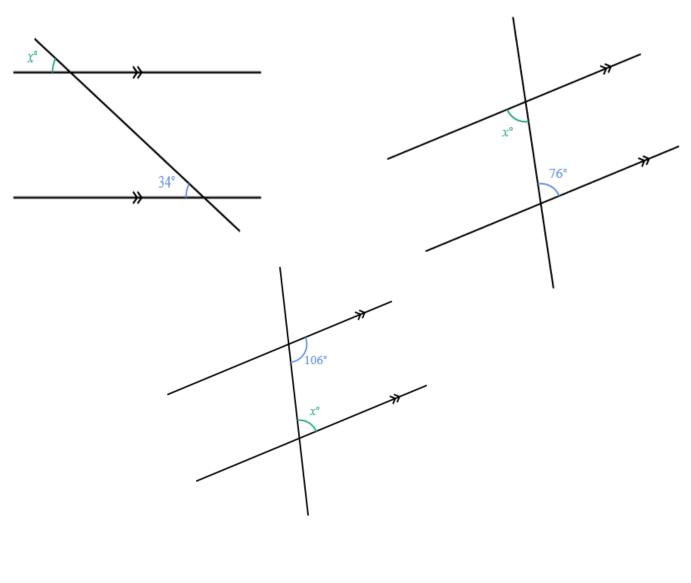

- **a)** $\frac{5}{12} \frac{1}{4}$ **b)** $\frac{3}{5} \frac{3}{8}$
- c) $\frac{2}{5} \times \frac{3}{4} =$ c) $\frac{4}{7} \times \frac{3}{4} =$ f) $\frac{5}{8} \times \frac{4}{15} =$
- **g**) $\frac{1}{7} \times ?=\frac{5}{63}$ **h**) $\frac{4}{9} \times ?=1$


Word Problems

There was $\frac{1}{4}$ of the cake left after a Birthday party. Ann ate $\frac{2}{3}$ of the leftover cake. How much of the original cake did she eat?

Ann ate $\frac{1}{4}$ of the cake the first day, on the second day she ate $\frac{2}{3}$ of the leftover cake. How much of the whole cake did she eat altogether?

Geometry



• The **angles** that are formed on opposite sides of the transversal and inside the two lines are **alternate interior angles**.

• When the lines are parallel, that the **alternate interior angles** are equal.

 $\angle 1 = \angle 2$

