
Chemistry 2, HW 22

Amines:

Central atom is nitrogen. Amines are derivatives of ammonia (NH3) where carbon atom replaces one, two, or three hydrogen atoms.

Amines are weak bases, they accept proton, they produce hydroxide ions in aqueous solution. Amines react with strong acids, the products are amine salt.



This Photo by Unknown Author is licensed under CC BY-NC

## $CH_3NH_2 + HCl \rightarrow CH_3N^+ H_3Cl^-$

Amine table (ignore K and pK values, it shows basically that these substances are week bases):

| Amine                                                           | Name                                                 | Bp,<br>℃ | Mp,<br>℃ | Water<br>solubility,<br>g/100 ml | K <sub>b</sub><br>in water* | pKa <sup>b</sup> |
|-----------------------------------------------------------------|------------------------------------------------------|----------|----------|----------------------------------|-----------------------------|------------------|
| NH <sub>3</sub>                                                 | ammonia                                              | -33      | -77.7    | 90°                              | $1.8 \times 10^{-5}$        | 9.26             |
| CH <sub>3</sub> NH <sub>2</sub>                                 | methanamine<br>(methylamine)                         | -6.5     | -92.5    | 1156                             | $4.4 	imes 10^{-4}$         | 10.64            |
| CH <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub>                 | ethanamine<br>(ethylamine)                           | 16.6     | -80.6    | 90                               | 5.6 × 10 <sup>4</sup>       | 10.75            |
| (CH <sub>3</sub> ) <sub>3</sub> CNH <sub>2</sub>                | 1,1-dimethylethanamine<br>( <i>tert</i> -butylamine) | 46       | -67.5    | 80                               | $2.8 \times 10^{-4}$        | 10.45            |
| (CH <sub>3</sub> CH <sub>2</sub> ) <sub>2</sub> NH              | N-ethylethanamine<br>(diethylamine)                  | 55.5     | -50      | v. sol.                          | $9.6 \times 10^{-4}$        | 10.98            |
| (CH <sub>3</sub> CH <sub>2</sub> ) <sub>3</sub> N               | N,N-diethylethanamine<br>(triethylamine)             | 89.5     | -115     | 1.520                            | $4.4 \times 10^{-4}$        | 10.64            |
| $(CH_3CH_2CH_2CH_2)_3N$                                         | N,N-dibutylbutanamine<br>(tributylamine)             | 214      |          | sl. sol.                         |                             |                  |
| МН                                                              | azacyclohexane<br>(piperidine)                       | 106      | -9       | 80                               | $1.6 	imes 10^{-3}$         | 11.20            |
| $\sim$                                                          | azabenzene<br>(pyridine)                             | 115      | -42      | 80                               | $1.7 \times 10^{-9}$        | 5.23             |
|                                                                 | cyclohexanamine                                      | 134      | -18      | sl. sol.                         | $4.4 \times 10^{-4}$        | 10.64            |
|                                                                 | benzenamine<br>(aniline)                             | 184.4    | -6.2     | 3.420                            | $3.8 	imes 10^{-10}$        | 4.58             |
| H <sub>2</sub> NCH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 1,2-ethanediamine<br>(ethylenediamine)               | 116      | 8.5      | sol.                             | $8.5 \times 10^{-5}$        | 9.93             |

\*Usually at 20-25°. The pK<sub>a</sub> values refer to the dissociation of the conjugate acid RNH<sub>3</sub><sup>®</sup> + H<sub>2</sub>O  $\xrightarrow{K_a}$  RNH<sub>2</sub> + H<sub>3</sub>O<sup>®</sup>, where pK<sub>a</sub> = -log K<sub>a</sub> = 14 + log K<sub>b</sub> (see Sections 8-1 and 23-7).

This Photo by Unknown Author is licensed under CC BY-SA-NC

Question: Write chemical reactions that show ethylamine

- 1. Ionizing in water
- 2. Neutralized in HCl