## HW 15, chemistry 2 **ALKENES**

**Alkenes** - unsaturated hydrocarbons, they have one or more carbon – carbon double bond. The simplest alkene C2H4, ethene,

$$c=c$$

| Hydrocarbon     | Formula                                                                             | Bp,<br>℃ | Mp,<br>℃   | Density,<br>d <sup>20</sup> |
|-----------------|-------------------------------------------------------------------------------------|----------|------------|-----------------------------|
|                 |                                                                                     |          |            |                             |
| ethane          | CH <sub>3</sub> —CH <sub>3</sub>                                                    | -88.6    | -183ª      |                             |
| ethene          | CH <sub>2</sub> =CH <sub>2</sub>                                                    | -105     | -169       |                             |
| ethyne          | CH≡CH                                                                               | -83      | -81        |                             |
| propane         | CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>3</sub>                                   | -42.1    | -187a      | 0.5016                      |
| propene         | CH <sub>3</sub> —CH==CH <sub>2</sub>                                                | -47.8    | $-185^{a}$ | 0.5146                      |
| propyne         | CH₃—C≡CH                                                                            | -23.2    | -102.7     | 0.7066                      |
| butane          | CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —CH <sub>3</sub>                  | -0.5     | -138       | 0.579                       |
| 1-butene        | $CH_3$ — $CH_2$ — $CH$ = $CH_2$                                                     | -6.3     | $-185^{a}$ | 0.595                       |
| cis-2-butene    | CH <sub>3</sub> CH==CHCH <sub>3</sub>                                               | 3.7      | -139       | 0.6216                      |
| trans-2-butene  | CH <sub>3</sub> -CH=CH-CH <sub>3</sub>                                              | 0.9      | -106       | 0.6046                      |
| 1-butyne        | CH <sub>3</sub> —CH <sub>2</sub> —C≡CH                                              | 8.1      | -126       | 0.65                        |
| 2-butyne        | CH₃—C≡C—CH₃                                                                         | 27.0     | -32        | 0.691                       |
| pentane         | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                     | 36.1     | -129       | 0.626                       |
| 1-pentene       | $CH_3$ — $CH_2$ — $CH_2$ — $CH$ = $CH_2$                                            | 30.0     | -165       | 0.641                       |
| cis-2-pentene   | CH <sub>3</sub> CH <sub>2</sub> CH=CH <sub>3</sub>                                  | 37.9     | -151       | 0.656                       |
| trans-2-pentene | CH <sub>3</sub> -CH <sub>2</sub> -CH=CH-CH <sub>3</sub>                             | 36.4     | -140       | 0.648                       |
| 1-pentyne       | $CH_3$ — $CH_2$ — $CH_2$ — $C$                                                      | 40.2     | -106       | 0.690                       |
| 2-pentyne       | CH₃—CH₂—C≡C—CH₃                                                                     | 56.1     | -109       | 0.711                       |
| hexane          | CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —CH <sub>2</sub> —CH <sub>3</sub> | 68.7     | -95        | 0.659                       |
| 1-hexene        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH=CH <sub>2</sub>                  | 63.5     | -140       | 0.674                       |
| cis-2-hexene    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH=-CHCH <sub>3</sub>               | 68.8     | -141       | 0.687                       |
| trans-2-hexene  | CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH=CH-CH <sub>3</sub>            | 67.9     | -133       | 0.678                       |
| cis-3-hexene    | CH <sub>3</sub> —CH <sub>2</sub> —CH=CH—CH <sub>2</sub> —CH <sub>3</sub>            | 66.4     | -138       | 0.680                       |
| trans-3-hexene  | CH <sub>3</sub> —CH <sub>2</sub> —CH=CH—CH <sub>2</sub> —CH <sub>3</sub>            | 67.1     | -113       | 0.677                       |
| 1-hexyne        | $CH_3$ — $CH_2$ — $CH_2$ — $CH_2$ — $C\equiv CH$                                    | 71       | -132       | 0.716                       |
| 2-hexyne        | CH₃—CH₂—CH₂—C≡C—CH₃                                                                 | 84.0     | -88        | 0.732                       |
| 3-hexyne        | $CH_3$ — $CH_2$ — $C$ $\equiv$ $C$ — $CH_2$ — $CH_3$                                | 81.8     | -105       | 0.724                       |

<sup>&</sup>lt;sup>a</sup>At the triple point (i.e., the temperature at which the solid, liquid, and vapor all are in equilibrium).

bUnder pressure.

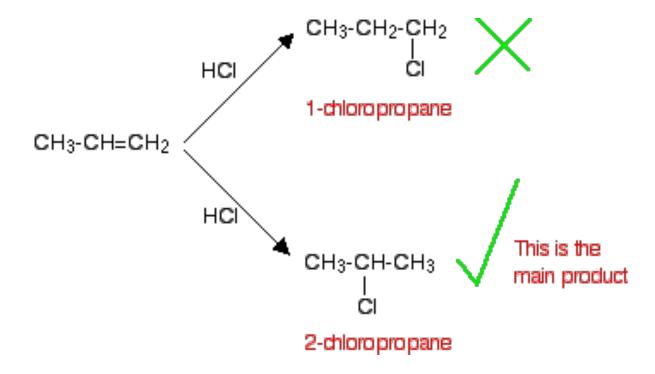
How to name alkenes: number the main chain from the end nearer to the double bond, put this number in the name, also do not forget the positions and names of the substituent groups. CH3 CH3

Remember, Cl- Br- groups will be called chloro-, bromo-.

The most characteristic reaction of alkenes is the addition reactions, where double bond is broken and new single bonds are formed.

For example:

Hydrogenation of Ethene


H C = C H + H<sub>2</sub> 
$$\xrightarrow{Pd/C}$$
 H H H H

Ethene

Ethene

When you write addition reactions of alkenes with such compounds like water or hydrogen halides you have to remember Markovnikov's rule:

H attaches to the carbon that already has more H atoms



## **Questions:**

Write the condense structural formulas and the names of the product in the following reactions:

- 1.  $CH3 CH2 CH=CH2 + Br2 \rightarrow$
- 2. Cis-2 -butene + H2  $\rightarrow$
- 3. CH3

$$CH3 - C = CH - CH2 - CH3 + C12 \rightarrow$$

- 4. CH3-CH=CH-CH3 + HBr  $\rightarrow$
- 5. CH2=CH-CH2-CH3 + HC1 →