	Time, s Volume, ml		
HW9	0	0	Let's consider the following reaction:
	10	19	$\mathrm{CaCO} 3+2 \mathrm{HCl} \rightarrow \mathrm{CaCl} 2+\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}$
	20	33	
	30	44	We measure the rate at which CO 2 is produced
	40	50	On the left is the data points, below the graph
	50	54	On
	60	56.5	rate of the reaction can be calculated like that:
	70	58.5	Average rate = change in volume/time=
	80	59.5	$60 / 90=0.67 \mathrm{ml} / \mathrm{s}$
	90	60	
	100	60	

Time, s

To calculate the initial rate of the reaction we draw the tangent line (slope that touches our curve at 0 point), and then draw the lines to axes X and Y that intersect on the slope. The rate at point zero (initial rate) $=42 / 20=2.1 \mathrm{ml} / \mathrm{s}$. So initially, the gas was produced at a rate of 2.1 ml per sec. The rate of reaction at any time can be found by drawing a slope at the particular time.

For the production of hydrogen gas (reaction: $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl} 2+\mathrm{H} 2$) we performed the following calculations:

Time, \mathbf{s} Volume, $\mathrm{cm}^{\mathbf{3}}$	
0	0
15	18.6
30	32.2
45	44.3
60	54.8
75	62.7
90	68.4
105	72.6
120	74.9
135	75.4
150	75.6
165	75.6
180	75.6

Initial rate, from the graph $75 / 55=1.36 \mathrm{~cm}^{3} / \mathrm{s}$
From the table Δ concentration/ Δ time $18.6 / 15=1.24$ average rate from 0 to 15 s

Rate at 120 sec (average rate of the reaction) From the table $74.9 / 120=0.62$
Instantaneous rate at 120 s
$(80-57) / 150=0.15$

Questions:

Look at the data and graph for CO 2 production.
Calculate the instantaneous rates at 20 s and 60 s .
Calculate the average rates of the reaction on the following time intervals: a) from 10 to $20 \mathrm{~s}, \mathrm{~b}$) from 70 to 80 s .

