3.5 Notes Name_____

Covalent Bonds

<u>Warm Up</u>

i. What is the main difference between ionic and covalent bonding? Explain in terms of electrons.

- ii. What types of elements make up covalent bonds?
- iii. Which of the following are examples of covalent bonds?
 - i. NaBr b. H_2O c. CH_4 d. Li_3N e. F_2 f. $CaCl_2$
- iv. Draw the Lewis Dot Diagram for the following NEUTRAL atoms.
- 1. Carbon c. Nitrogen

b. Oxygen

d. Iodine f. Sulfur e. Hydrogen

A Few Helpful Vocab Words...

____•

)

i. <u>Element</u>

A pure substance made of only <u>one type of atom;</u> CANNOT be broken down by _____ means.

Examples: _____, ____, and

ii. Compound

A pure substance made of ______ or more types of atoms that are CHEMICALLY BONDED together in ______ ratios; CAN be broken down by ______ means (undergoing a chemical reaction)

Examples: ______, _____, and

iii. <u>Electronegativity</u> - A measure of an atom's desire to ______ an electron.

Covalent Bonding

A covalent bond occurs when two or more atoms ______ electrons in order for each individual atom to have a stable octet (aka having a

In technical terms, a <u>Covalent Bond</u> occurs between 2 or more atoms that want to gain an electron (have a ______ EN) have to work together. Neither atom is strong enough to completely take the electron away from the other. If this was the case, it would be an _____ bond.

Covalent Lewis Dot Diagrams

Example 1: CH₄

Step 3: Connect the atoms into a structure.

Step 1: Draw the Lewis Dot Diagram

		Keinen
Draw the Lewis Dot Diagram for ONE Carbon Atom	Draw the Lewis Dot Diagram for FOUR Hydrogen Atoms	happer Check:
		EL

Remember: a covalent bond ns for an atom to _____ its outer shell by _____ electrons.

ELEMENT	Valence e- it has	Valence e- it wants
Carbon		
Hydrogen		

Structure for CH₄:

Step 2: Find the total number of valence electrons in ALL atoms:

Covalent Lewis Dot Diagrams

Example 2: NF₃

Step 3: Connect the atoms into a structure.

Step 1: Draw the Lewis Dot Diagram

Lewis Dot Diagram for FHREE Fluorine Atoms

Remember: a covalent bond happens for an atom to ______ its outer shell by ______ electrons.

Check:

ELEMENT	Valence e- it has	Valence e- it wants
Nitrogen		
Fluorine		

Structure for NF₃:

Step 2: Find the total number of valence electrons in ALL atoms:

