Homework 12

Graphical representation of ideal gas processes.

We know that pressure P , volume V and temperature T of the ideal gas are connected with the expression:

$$
\begin{equation*}
P \cdot V=n \cdot R \cdot T \tag{1}
\end{equation*}
$$

Which is called "equation of state for an ideal gas". Here n is the number of moles of the gas and $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mole} \mathrm{K}$ is the universal gas constant (sometimes it is referred to as MendeleevClapeyron constant).

If we know just to parameters, for example P and V , we can easily calculate the third one - T (if the num, ber of moles is known). So the state of the gas can be conveniently represented graphically - as a point in a coordinate plane with the axes P and V :

Figure 1. Graphic representation of the state of an ideal gas corresponding to the pressure of $101,339 \mathrm{~Pa}$ and volume $0,0224 \mathrm{~m}^{3}$.

The black point in Figure 1 corresponds to an ideal gas having pressure $\mathrm{P}=101,339 \mathrm{~Pa}$ and volume $\mathrm{V}=0.0224 \mathrm{~m}^{3}$. If we know the amount of the gas, say, 1 mole, we can easily calculate the temperature using expression (1): $\mathrm{T}=273.16 \mathrm{~K}$.

Now we are reducing the gas pressure to $2 \times 10^{4} \mathrm{~Pa}$ while keeping volume constant Processes at a constant volume are called isochoric processes. This process can be shown as a vertical straight line:

Figure 2. Isochoric pressure decrease.
We can calculate the temperature in the final state using equation 1 :

$$
\begin{equation*}
T=\frac{P \cdot V}{n \cdot R}=\frac{2 \cdot 10^{4} P a \cdot 0.0224 \mathrm{~m}^{3}}{1 \cdot 8.31 \frac{J}{\text { mole } \cdot K}} \approx 54 K \tag{2}
\end{equation*}
$$

Another way to calculate the temperature is to use the expression:

$$
T_{2}=T_{1} \cdot \frac{P_{2}}{P_{1}}=273.16 \mathrm{~K} \cdot \frac{20000 \mathrm{~Pa}}{101339 \mathrm{~Pa}} \approx 54 \mathrm{~K}
$$

So the temperature decreased during the process. In other words, we just cooled up the gas in a closed volume. Let us assume that the gas does not became liquid at this temperature. For example let us imagine that we are using helium which becomes liquid at 4.2 K .

Now, we will increase the volume to 0.113 m 3 while keeping the pressure constant. Processes at a constant pressure are called isobaric processes. The result is shown in Figure 3. Calculation of the temperature gives

$$
\begin{equation*}
T=\frac{P \cdot V}{n \cdot R}=\frac{2 \cdot 10^{4} P a \cdot 0.113 \mathrm{~m}^{3}}{1 \mathrm{~mole} \cdot 8.31 \frac{\mathrm{~J}}{\mathrm{~mole} \cdot \mathrm{~K}}} \approx 273.16 \mathrm{~K} \tag{3}
\end{equation*}
$$

Figure 4. Isochoric pressure decrease and isobaric volume increase.

Now we will decrease volume and increase pressure at the same time while keeping the temperature equal 273.16 K . Process at a constant temperature is called isothermal process. The dependence of pressure on volume $\mathrm{P}(\mathrm{V})$ at a constant $\mathrm{T}=373.16 \mathrm{~K}$ can be obtained from the equation of state:

$$
\begin{equation*}
P=\frac{n \cdot R \cdot T}{V}=\frac{1 \text { mole } \cdot 8.31 \frac{\mathrm{~J}}{\mathrm{~mole} \cdot \mathrm{~K}} \cdot 273.16 \mathrm{~K}}{V}=\frac{2,270 \mathrm{~J}}{V} \tag{4}
\end{equation*}
$$

The result is shown in Figure 5. The expression (4) corresponds to hyperbola (process 1-3).

Figure 5. Isochoric (1-2) ,isobaric (2-3) and isothermal (3-1) processes.
Problems:

1. Draw the cyclic process shown in Figure 5 in the coordinates P, T and V, T.
2. There is a cyclic process shown in a Figure below. Show on the graph the points corresponding to the gas states with highest and lowest temperature.

