Math 7: Handout 28 Trigonometry 8: Inverse trigonometric functions: arc-sine and arc-cosine [2023/05/14]

Previously, we solved trigonometric equations of type $\sin \alpha = \sin c$ and obtained an infinite number of solutions, different by a whole number of full-circles (2π) . Even within one full circle $(0 \le \alpha < 2\pi)$, there may be two solutions because the horizontal line $y = \sin c$ may intersect the trigonometric circle at two points.

ARC-SINE FUNCTION

Now, how does one solve a general equation $\sin \alpha = A$? We know that there are infinitely many solutions different by $(2\pi n)$, so we need to know only one to find all the others. Suppose we find one angle α_0 such that $\sin \alpha_0 = A$; then, all other solutions (see the figure, left) can be written as

$$\begin{bmatrix} \alpha &= 2\pi n + \alpha_0, \\ \alpha &= 2\pi n + \pi - \alpha_0, \end{bmatrix} \quad \forall n = 0, \pm 1, \pm 2, \ldots \in \mathbb{Z}$$

While it does not matter which α_0 we choose (from infinitely many), it is conventional to choose it to be in the range $-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}$, so that there is *only single value* α_0 corresponding to any $-1 \leq A \leq 1$. This is called arc-sine function,

$$\alpha_0 = \arcsin A, \quad -\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}.$$

All possible angles that can be produced by $\arcsin a$ resin are shown on the trigonometric circle (left). The value of $\arcsin A$ can be looked up in a table, but it is, in general, an infinite decimal fraction (like π ; such numbers are called transcendental). It is conventional to leave the $\arcsin A$ as-is in the answer:

$$\sin \alpha = A \quad \Longleftrightarrow \quad \begin{bmatrix} \alpha &= 2\pi n + \arcsin A \,, \\ \alpha &= 2\pi n + \pi - \arcsin A \,, \end{bmatrix} \quad \forall n \in \mathbb{Z}$$

ARC-COSINE FUNCTION

Now, what about the equation $\cos \beta = \cos d = B$? You should remember that $\cos \beta = \cos(-\beta)$, so for every solution, its negative is also a solution, so

$$\begin{bmatrix} \beta &= 2\pi n + \beta_0, \\ \beta &= 2\pi n - \beta_0, \end{bmatrix} \forall n = 0, \pm 1, \pm 2, \ldots \in \mathbb{Z}$$

(the $(2\pi n)$ piece includes negative and positive cases). It is conventional to choose the angle $0 \le \beta_0 < \pi$, so that it is *unique* for any $-1 \le B \le 1$. All possible angles β_0 are shown in the figure (right), so that

$$\cos \beta = b \quad \Longleftrightarrow \quad \beta = 2\pi n \pm \arccos B \,, \quad \forall n = 0, \pm 1, \pm 2, \ldots \in \mathbb{Z}$$

The values of $\arcsin A$ and $\arccos A$ for some standard values of A are summarized in the table

A	-1	$-\sqrt{3}/2$	$-\sqrt{2}/2$	-1/2	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\arcsin A$	$-\pi/2$	$-\pi/3$	$-\pi/4$	$-\pi/6$	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\arccos A$	π	$5\pi/6$	$3\pi/4$	$2\pi/3$	$\pi/2$	$\pi/3$	$\pi/4$	$\pi/6$	0

Homework

- **1.** Solve the following equations:
- 1. Solve the following equations: (a) $\sin x = \frac{2}{3}$; (b) $\cos x = -\frac{3}{4}$; (c) $\cos(x \frac{\pi}{2}) = \frac{1}{4}$; (d) $\sin(\frac{\pi}{2} + x) = \frac{1}{3}$. 2. Solve the following equations: (a) $12(\cos x)^2 \cos x 1 = 0$; (b) $(\sin x)^2 + 3(\cos x)^2 = 2$; 3. Solve inequalities
- **3.** Solve inequalities
- (a) cos x ≤ 1/3;
 (b) sin x > 1/4.
 4. Let's assume that for some angle α, sin α = A. Can you find the sum (arcsin A + arccos A)? Recall that swapping the axes $x \leftrightarrow y$ is equivalent to swapping $\cos \alpha \leftrightarrow \sin \alpha$.