Math 7: Handout 28

Trigonometry 8: Inverse trigonometric functions: arc-sine and arc-cosine [2023/05/14]

Previously, we solved trigonometric equations of type $\sin \alpha=\sin c$ and obtained an infinite number of solutions, different by a whole number of full-circles (2π). Even within one full circle $(0 \leq \alpha<2 \pi)$, there may be two solutions because the horizontal line $y=\sin c$ may intersect the trigonometric circle at two points.

ARC-SINE FUNCTION

Now, how does one solve a general equation $\sin \alpha=A$? We know that there are infinitely many solutions different by $(2 \pi n)$, so we need to know only one to find all the others. Suppose we find one angle α_{0} such that $\sin \alpha_{0}=A$; then, all other solutions (see the figure, left) can be written as

$$
\left[\begin{array}{ll}
\alpha & =2 \pi n+\alpha_{0}, \\
\alpha & =2 \pi n+\pi-\alpha_{0},
\end{array} \quad \forall n=0, \pm 1, \pm 2, \ldots \in \mathbb{Z}\right.
$$

While it does not matter which α_{0} we choose (from infinitely many), it is conventional to choose it to be in the range $-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}$, so that there is only single value α_{0} corresponding to any $-1 \leq A \leq 1$. This is called arc-sine function,

$$
\alpha_{0}=\arcsin A, \quad-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2} .
$$

All possible angles that can be produced by arcsin are shown on the trigonometric circle (left). The value of arcsin A can be looked up in a table, but it is, in general, an infinite decimal fraction (like π; such numbers are called transcendental). It is conventional to leave the $\arcsin A$ as-is in the answer:

$$
\sin \alpha=A \quad \Longleftrightarrow \quad\left[\begin{array}{ll}
\alpha=2 \pi n+\arcsin A, \\
\alpha=2 \pi n+\pi-\arcsin A,
\end{array} \quad \forall n \in \mathbb{Z}\right.
$$

ARC-COSINE FUNCTION

Now, what about the equation $\cos \beta=\cos d=B$? You should remember that $\cos \beta=\cos (-\beta)$, so for every solution, its negative is also a solution, so

$$
\left[\begin{array}{ll}
\beta & =2 \pi n+\beta_{0}, \\
\beta & =2 \pi n-\beta_{0},
\end{array} \quad \forall n=0, \pm 1, \pm 2, \ldots \in \mathbb{Z}\right.
$$

(the ($2 \pi n$) piece includes negative and positive cases). It is conventional to choose the angle $0 \leq \beta_{0}<\pi$, so that it is unique for any $-1 \leq B \leq 1$. All possible angles β_{0} are shown in the figure (right), so that

$$
\cos \beta=b \quad \Longleftrightarrow \quad \beta=2 \pi n \pm \arccos B, \quad \forall n=0, \pm 1, \pm 2, \ldots \in \mathbb{Z}
$$

The values of $\arcsin A$ and $\arccos A$ for some standard values of A are summarized in the table

A	-1	$-\sqrt{3} / 2$	$-\sqrt{2} / 2$	$-1 / 2$	0	$1 / 2$	$\sqrt{2} / 2$	$\sqrt{3} / 2$	1
$\arcsin A$	$-\pi / 2$	$-\pi / 3$	$-\pi / 4$	$-\pi / 6$	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
$\arccos A$	π	$5 \pi / 6$	$3 \pi / 4$	$2 \pi / 3$	$\pi / 2$	$\pi / 3$	$\pi / 4$	$\pi / 6$	0

Homework

1. Solve the following equations:
(a) $\sin x=\frac{2}{3}$;
(b) $\cos x=-\frac{3}{4}$;
(c) $\cos \left(x-\frac{\pi}{2}\right)=\frac{1}{4}$;
(d) $\sin \left(\frac{\pi}{2}+x\right)=\frac{1}{3}$.
2. Solve the following equations:
(a) $12(\cos x)^{2}-\cos x-1=0$;
(b) $(\sin x)^{2}+3(\cos x)^{2}=2$;
3. Solve inequalities
(a) $\cos x \leq \frac{1}{3}$;
(b) $\sin x>\frac{1}{4}$.
4. Let's assume that for some angle α, $\sin \alpha=A$. Can you find the sum $(\arcsin A+\arccos A)$? Recall that swapping the axes $x \leftrightarrow y$ is equivalent to swapping $\cos \alpha \leftrightarrow \sin \alpha$.
