## Math 7: Handout 27 Trigonometry 7: Trigonometric identities; reduction formulas [2023/05/07]

## **REDUCTION FORMULAS**

We already know that  $\sin \alpha$  and  $\cos \alpha$  are periodic with period  $2\pi$  (do not change if you add  $2\pi$  to  $\alpha$ ) and change sign if you add  $\pi$  to  $\alpha$ . Since  $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$ , it does not change if you add  $\pi$  to  $\alpha$  ( $\tan \alpha$  is periodic with period  $\pi$ ). What if one adds a fraction of angle to  $\alpha$ , i.e.  $\alpha \to (\alpha + \frac{\pi}{2})$ ? On a trigonometric circle (see the figure), this is equivalent to a turn by 90° counter-clockwise, and

$$\sin(\alpha + 90^\circ) = \cos \alpha ,$$
  
$$\cos(\alpha + 90^\circ) = -\sin \alpha ,$$

It is evident that sin changes to  $\cos$ , and  $\cos$  to  $\sin$  for any angle  $\alpha$  because x and y axes trade places. However, the sign can be confusing. Thankfully, there is a very simple rule of thumb how to know the sign of the result:

Assume for a moment that angle  $\alpha$  is acute ( $0 < \alpha < 90^{\circ}$ ) and see in which quadrant the argument ( $\alpha + 90^{\circ}$ ) ends up!

For the above example, it is quadrant II, where  $\sin(\alpha + 90^{\circ})$  is positive; therefore, the right-hand side  $(\cos \alpha)$  must also be positive, so the sign is "(+)". On the other hand,  $\cos(\alpha + 90^{\circ})$  is negative, so the sign is "(-)" in the second line.

|          | Ι                            | II                             | III                             | IV                               |
|----------|------------------------------|--------------------------------|---------------------------------|----------------------------------|
|          | $0 < \alpha < \frac{\pi}{2}$ | $\frac{\pi}{2} < \alpha < \pi$ | $\pi < \alpha < \frac{3\pi}{2}$ | $\frac{3\pi}{2} < \alpha < 2\pi$ |
| $\sin x$ | +                            | +                              | —                               | -                                |
| $\cos x$ | +                            | —                              | _                               | +                                |
| $\tan x$ | +                            | —                              | +                               | —                                |
| $\cot x$ | +                            | —                              | +                               | —                                |



Let's look at another example and use radians instead of angles; what if the argument is  $(\pi - x)$ ? In this case, the trigonometric circle is "reflected" about the *y*-axis, so the axes *x* and *y* themselves are not swapped; however, the sign of *x* coordinate changes to the opposite, therefore

$$\sin(\pi - \alpha) = \sin \alpha ,$$
  
$$\cos(\pi - \alpha) = -\cos \alpha ,$$

The same rules apply to tangent and cotangent, and we can now summarize the rules for reduction as follows:

- 1. If the angle is changed by an odd number of  $\frac{\pi}{2}$  (that is,  $\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}$ , etc), change to co-function (sin  $\rightarrow$  cos, cos  $\rightarrow$  sin, tan  $\rightarrow$  cot, cot  $\rightarrow$  tan); if the angle is changed by an even number of  $\frac{\pi}{2}$  (that is  $\pm \pi, \pm 2\pi$ , etc) the function is not changed.
- **2.** if the initial function is positive in the quadrant for small (acute) angle  $\alpha$ , keep the sign the same; if it is negative, change it to the opposite.

As the another example, let's find the value of  $tan(\frac{3\pi}{2} + \alpha)$ . First, we know that the function will change from tan to cot; second, the angle  $(\frac{3\pi}{2} - \alpha)$  is in the 4th quadrant (assuming that the angle  $\alpha$  is acute), where tan is negative; therefore, the reduction rules give

$$\tan(\frac{3\pi}{2} + \alpha) = -\cot\alpha.$$

SIMPLE TRIGONOMETRIC IDENTITIES

We already know that  $(\sin \alpha)^2 + (\cos \alpha)^2 = 1$ . This identity helps us find  $\cos \alpha$  and  $\tan \alpha = \frac{1}{\cot \alpha}$  if we know that, for example  $\sin \alpha = c$ , but up to a sign:

$$\cos \alpha = \sqrt{1 - (\sin \alpha)^2} = \sqrt{1 - c^2},$$
$$\tan \alpha = \frac{1}{\cot \alpha} = \frac{\sin \alpha}{\cos \alpha} = \pm \frac{c}{\sqrt{1 - c^2}}$$

To know the sign, we also need to know which quadrant  $\alpha$  belongs to.

For example, if  $\sin \alpha = -\frac{3}{5}$ , and  $\alpha$  is in the 4th quadrant, then  $\cos \alpha > 0$  and  $\tan \alpha < 0$ . Therefore,

$$\cos \alpha = \sqrt{1 - (3/5)^2} = \frac{4}{5},$$
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{-3/5}{4/5} = -\frac{3}{4}$$

The other useful identities are for tangent and cotangent,

$$1 + (\tan \alpha)^2 = \frac{1}{(\cos \alpha)^2},$$
$$1 + (\cot \alpha)^2 = \frac{1}{(\sin \alpha)^2},$$

If we know the tangent of some angle  $\tan \alpha = d$ , it is also easy to find  $\cos \alpha$  and  $\sin \alpha$ :

$$\cos \alpha = \pm \frac{1}{\sqrt{1 + (\tan \alpha)^2}} = \pm \frac{1}{\sqrt{1 + d^2}}$$
$$\sin \alpha = \tan \alpha \cdot \cos \alpha = \pm \frac{d}{\sqrt{1 + d^2}}.$$

and the signs depend on which quadrant  $\alpha$  is in.

## HOMEWORK

**1.** Reduce the angle argument to  $\alpha$  in the following expressions:

(a) 
$$\cos(x - \frac{\pi}{2})$$
; (c)  $\tan(2\pi - x)$ ; (e)  $\sin(\frac{3\pi}{2} - x)$ ;  
(b)  $\sin(\pi + x)$ ; (d)  $\cos(x + \frac{3\pi}{2})$ ; (f)  $\cot(x + \frac{3\pi}{2})$ .

**2.** If you know that  $\sin x = \frac{5}{13}$  and  $0 < x < \frac{\pi}{2}$ , find the values

(a)  $\cos(x + \frac{\pi}{2})$ ; (b)  $\cot(\frac{3\pi}{2} - x)$ ; (c)  $\sin(2\pi - x)$ ?

- **3.** If you know that  $\tan x = -\frac{1}{2}$  and  $\frac{\pi}{2} < x < \pi$ , can you find
  - (a)  $\sin(x \frac{\pi}{2})$ ;
  - (b)  $\tan(\pi x)$ ;
  - (c)  $\sin(x + \frac{3\pi}{2})$ ?
- 4. Show that  $\sin x + \sin(x + \frac{\pi}{3}) + \sin(x + \frac{2\pi}{3}) + \sin(x + \pi) + \sin(x + \frac{4\pi}{3}) + \sin(x + \frac{5\pi}{3}) = 0.$