Math 7: Handout 27

Trigonometry 7: Trigonometric identities; reduction formulas [2023/05/07]

REDUCTION FORMULAS

We already know that $\sin \alpha$ and $\cos \alpha$ are periodic with period 2π (do not change if you add 2π to α) and change sign if you add π to α. Since $\tan \alpha=\frac{\sin \alpha}{\cos \alpha}$, it does not change if you add π to $\alpha(\tan \alpha$ is periodic with period $\pi)$. What if one adds a fraction of angle to α, i.e. $\alpha \rightarrow\left(\alpha+\frac{\pi}{2}\right)$? On a trigonometric circle (see the figure), this is equivalent to a turn by 90° counter-clockwise, and

$$
\begin{aligned}
& \sin \left(\alpha+90^{\circ}\right)=\cos \alpha \\
& \cos \left(\alpha+90^{\circ}\right)=-\sin \alpha
\end{aligned}
$$

It is evident that sin changes to cos, and cos to \sin for any angle α because x and y axes trade places. However, the sign can be confusing. Thankfully, there is a very simple rule of thumb how to know the sign of the result:

Assume for a moment that angle α is acute $\left(0<\alpha<90^{\circ}\right)$ and see in which quadrant the argument $\left(\alpha+90^{\circ}\right)$ ends up!

For the above example, it is quadrant II, where $\sin \left(\alpha+90^{\circ}\right)$ is positive; therefore, the right-hand side ($\cos \alpha$) must also be positive, so the sign is " $(+)$ ". On the other hand, $\cos \left(\alpha+90^{\circ}\right)$ is negative, so the sign is " $(-)$ " in the second line.

| | I | II | III | IV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $0<\alpha<\frac{\pi}{2}$ | $\frac{\pi}{2}<\alpha<\pi$ | $\pi<\alpha<\frac{3 \pi}{2}$ | $\frac{3 \pi}{2}<\alpha<2 \pi$ |
| $\sin x$ | + | + | - | - |
| $\cos x$ | + | - | - | + |
| $\tan x$ | + | - | + | - |
| $\cot x$ | + | - | + | - |

Let's look at another example and use radians instead of angles; what if the argument is $(\pi-x)$? In this case, the trigonometric circle is "reflected" about the y-axis, so the axes x and y themselves are not swapped; however, the sign of x coordinate changes to the opposite, therefore

$$
\begin{aligned}
& \sin (\pi-\alpha)=\sin \alpha \\
& \cos (\pi-\alpha)=-\cos \alpha
\end{aligned}
$$

The same rules apply to tangent and cotangent, and we can now summarize the rules for reduction as follows:

1. If the angle is changed by an odd number of $\frac{\pi}{2}$ (that is, $\pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}$, etc), change to co-function ($\sin \rightarrow \cos$, $\cos \rightarrow \sin , \tan \rightarrow \cot$, cot $\rightarrow \tan$) ; if the angle is changed by an even number of $\frac{\pi}{2}$ (that is $\pm \pi, \pm 2 \pi$, etc) the function is not changed.
2. if the initial function is positive in the quadrant for small (acute) angle α, keep the sign the same; if it is negative, change it to the opposite.

As the another example, let's find the value of $\tan \left(\frac{3 \pi}{2}+\alpha\right)$. First, we know that the function will change from \tan to cot; second, the angle $\left(\frac{3 \pi}{2}-\alpha\right)$ is in the 4th quadrant (assuming that the angle α is acute), where tan is negative; therefore, the reduction rules give

$$
\tan \left(\frac{3 \pi}{2}+\alpha\right)=-\cot \alpha
$$

SIMPLE TRIGONOMETRIC IDENTITIES

We already know that $(\sin \alpha)^{2}+(\cos \alpha)^{2}=1$. This identity helps us find $\cos \alpha$ and $\tan \alpha=\frac{1}{\cot \alpha}$ if we know that, for example $\sin \alpha=c$, but up to a sign:

$$
\begin{aligned}
& \cos \alpha=\sqrt{1-(\sin \alpha)^{2}}=\sqrt{1-c^{2}} \\
& \tan \alpha=\frac{1}{\cot \alpha}=\frac{\sin \alpha}{\cos \alpha}= \pm \frac{c}{\sqrt{1-c^{2}}}
\end{aligned}
$$

To know the sign, we also need to know which quadrant α belongs to.
For example, if $\sin \alpha=-\frac{3}{5}$, and α is in the 4th quadrant, then $\cos \alpha>0$ and $\tan \alpha<0$. Therefore,

$$
\begin{aligned}
& \cos \alpha=\sqrt{1-(3 / 5)^{2}}=\frac{4}{5} \\
& \tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{-3 / 5}{4 / 5}=-\frac{3}{4}
\end{aligned}
$$

The other useful identities are for tangent and cotangent,

$$
\begin{aligned}
1+(\tan \alpha)^{2} & =\frac{1}{(\cos \alpha)^{2}} \\
1+(\cot \alpha)^{2} & =\frac{1}{(\sin \alpha)^{2}}
\end{aligned}
$$

If we know the tangent of some angle $\tan \alpha=d$, it is also easy to find $\cos \alpha$ and $\sin \alpha$:

$$
\begin{aligned}
& \cos \alpha= \pm \frac{1}{\sqrt{1+(\tan \alpha)^{2}}}= \pm \frac{1}{\sqrt{1+d^{2}}} \\
& \sin \alpha=\tan \alpha \cdot \cos \alpha= \pm \frac{d}{\sqrt{1+d^{2}}}
\end{aligned}
$$

and the signs depend on which quadrant α is in.

Homework

1. Reduce the angle argument to α in the following expressions:
(a) $\cos \left(x-\frac{\pi}{2}\right)$;
(c) $\tan (2 \pi-x)$;
(e) $\sin \left(\frac{3 \pi}{2}-x\right)$;
(b) $\sin (\pi+x)$;
(d) $\cos \left(x+\frac{3 \pi}{2}\right)$;
(f) $\cot \left(x+\frac{3 \pi}{2}\right)$.
2. If you know that $\sin x=\frac{5}{13}$ and $0<x<\frac{\pi}{2}$, find the values
(a) $\cos \left(x+\frac{\pi}{2}\right)$;
(b) $\cot \left(\frac{3 \pi}{2}-x\right)$;
(c) $\sin (2 \pi-x)$?
3. If you know that $\tan x=-\frac{1}{2}$ and $\frac{\pi}{2}<x<\pi$, can you find
(a) $\sin \left(x-\frac{\pi}{2}\right)$;
(b) $\tan (\pi-x)$;
(c) $\sin \left(x+\frac{3 \pi}{2}\right)$?
4. Show that $\sin x+\sin \left(x+\frac{\pi}{3}\right)+\sin \left(x+\frac{2 \pi}{3}\right)+\sin (x+\pi)+\sin \left(x+\frac{4 \pi}{3}\right)+\sin \left(x+\frac{5 \pi}{3}\right)=0$.
