Math 7: Handout 23 Trigonometry 3: The Trigonometric Circle [2023/04/02]

RADIANS

Until now, we have been measuring angles in degrees, which are defined by saying that a full turn corresponds to 360° .

An alternative way to measure angles is by radians, which are defined in the following way: given an angle α , it's measure in radians is the ratio of an arc of circumference with angle α by the radius of the circumference.

For example, the angle 360° corresponds to a full circle. Since the perimeter of a circle is $2\pi R$, dividing by R gives:

$$360^{\circ} \leftrightarrow 2\pi \text{ rad.}$$

In the same way, half a circle corresponds to an angle of π radians. By similar arguments, we can translate all the angles that appeared in our previous table:

Trigonometric Functions									
Function	Notation	Definition	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$		
sine	$\sin(\alpha)$	opposite side hypotenuse	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1		
cosine	$\cos(\alpha)$	adjacent side hypotenuse	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0		
tangent	$tan(\alpha)$	opposite side adjacent side	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞		

TRIGONOMETRIC CIRCLE

A very useful tool in understanding the trigonometric functions is the *trigonometric circle* (see figure below): in order to find the sine and cosine of a positive angle α , we just have to "walk" around the circle a distance α , starting from the point (1,0) in anti clockwise direction. Then the coordinates of the point we arrive at are $(\cos \alpha, \sin \alpha)$. For α negative, we define the sine and cosine in the same way, but walking in the clockwise direction.

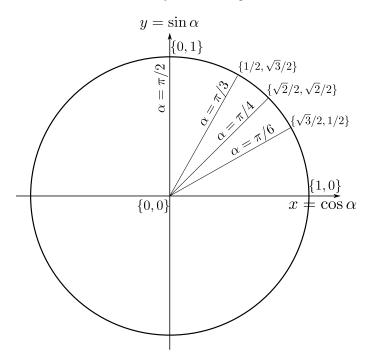


FIGURE 1. Trigonometric circle: in order to find the sine and cosine of angle α , we just have to "walk" around the circle a distance α , starting from the point (1,0). Then the coordinates of the point we arrive at are $(\cos \alpha, \sin \alpha)$.

By looking at the values of sine and cosine as we go around the trigonometric circle, it becomes self-evident that

- $\sin(x)$ is periodic and repeats itself after 2π : $\sin(x+2\pi) = \sin x$;
- $\sin(x)$ changes its sign every time x changes by π : $\sin(x+\pi) = -\sin x$;
- the above is also true for the cosine: $\cos(x+\pi) = -\cos x$, $\cos(x+2\pi) = \cos x$;
- over the period 2π , both sine and cosine cross zero value two times: $\sin 0 = \sin \pi = 0 = \cos \frac{\pi}{2} = \cos \frac{3\pi}{2}$;
- $\sin x$ reaches it's maximum value 1 at $x = \frac{\pi}{2}$, decreases from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$, reaches its minimum value -1 at $x = \frac{3\pi}{2}$, increases to $\frac{5\pi}{2}$ and then repeats itself;
- $\cos x$ decreases from (+1) to (-1) for $0 < x < \pi$ and increases back to (+1) for $\pi < x < 2\pi$.

1

- 1. Draw a large trigonometric circle. Then, remembering that 2π corresponds to a full circle, find the points corresponding to (write the corresponding letter on the correct point)
 - (a) π (b) $\frac{3\pi}{2}$

- **2.** Now use your trigonometric circle and figure 1 to complete this table:

Point	Sine	Cosine	
(a)	0	-1	
(b)			
(c)			
(d)			
(e)			
(f)			
(g)			
(h)			

3. Using the trigonometric circle, check where appropriate:

x	$\sin x \ge \sqrt{3}/2$	$1/2 < \sin x < \sqrt{3}/2$	$-\sqrt{2}/2 < \sin x \le 1/2$	$\sin x \le -\sqrt{2}/2$
$\pi/7$			✓	
$2\pi/7$				
$-3\pi/5$				
$5\pi/8$				
$25\pi/9$				

- 4. Using the trigonometric circle, show that $\cos x = \sin (x + \pi/2)$ for any angle x. 5. Find all real numbers x such that $(\sin x)^2 = 3/4$