Math 7: Handout 20 [2023/03/12]
Coordinate Geometry 3: Parabolas. Addition of Graphs

Properties of a Parabola

A parabola is the set of all points in a plane that are equally distant away from a given point and a given line (see black dotted lines).

This given point is called the focus (black dot) of the parabola and the line is called the directrix (green line). If the parabola is of the form $(x-h)^{2}=4 p(y-k)$, the vertex is (h, k), the focus is $(h, k+p)$ and directrix is $y=k-p$

The graph above is a parabola with vertex $(1,-1)$, focus $(1,0)$, and the directrix $y=-2$. It has thus equation $(x-1)^{2}=4(y+1)$ or $y=\frac{1}{4}(x-1)^{2}-1$.

In general, the plot of a quadratic function $y=a x^{2}+b x+c$ is parabola; to plot it, complete the square and find its vertex, e.g.:

$$
\begin{equation*}
y=2 x^{2}+12 x-10=2\left(x^{2}+6 x-5\right)=2\left((x+3)^{2}-14\right) \text { or } \frac{1}{2}(y+28)=(x+3)^{2}, . \tag{1}
\end{equation*}
$$

This parabola has vertex $(-3,-28)$ and focal distance $\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8}$.

Adding Graphs

Now that we know how to draw a lot of basic graphs and how to use transformations, we can draw more complicated graphs - that is, graphs that are we get by adding two functions.

For example, if we want to draw a graph of a function

$$
y=x^{2}+\frac{1}{x}
$$

we can carefully examine graphs of $y=x^{2}$ (blue) and $y=1 / x$ (green), and then see what happens if one adds these two graphs (red).

HOMEWORK

1. Sketch the following functions:
(a) $y=|x|+|x+1|$
(b) $y=|x-1|+|x+1|$
(c) $y=|x-1|-|x+1|$
(d) $|y|=x$
[Hint for this problem and the next one: Draw the graphs of each of the summands separately, and then try to add the graphs.]
2. Sketch the following functions:
(a) $y=x+\frac{1}{|x|}$
(b) $y=\sqrt{x}+x$
(c) $y=2 x-\frac{1}{x}$
3. Graph $x^{2}=4 y$. What is the focus, directrix and vertex of the parabola?
*4. Find all intersection points of parabola $y=x^{2}$ and the circle with radius $\sqrt{6}$ and center at $(0,4)$.
*5. Let A and B be points with coordinates (a, r) and (b, s). Then let N be the point with coordinates $(b-a, s-r)$, and let O be the origin $(0,0)$. Show that $O N \cong A B$ and that $A B N O$ is a parallelogram (Hint: the diagonals $A N, B O$ must bisect each other.)
