MATH 7: HOMEWORK 21

Parabolas, adding graphs. April 2, 2023

1. Quadratic function (revisited +)

Quadratic equation in a standard form: $a x^{2}+b x+c=0$

- a, b, c-coefficients, determinant $\mathrm{D}: ~ D=\boldsymbol{b}^{2}-\mathbf{4 a c}$, solutions(roots): $\boldsymbol{x}_{1,2}=\frac{-\boldsymbol{b} \pm \sqrt{\boldsymbol{D}}}{2 a}$
- D determines the number of roots! ($D<0$ no solutions, $D=0$ one solution, $D>0$ two solutions)

Quadratic function in a factored form: $y=a\left(x-x_{1}\right)\left(x-x_{2}\right)$, where

- roots: the numbers x_{1} and x_{2} - solutions of the quadratic equation $(y=0)$
- Vieta's formulas: The roots are related to the coefficients: $x_{1} x_{2}=\frac{c}{a}$ and $x_{1}+x_{2}=-\frac{b}{a}$

Quadratic function in a vertex form: $\quad y=a(x-h)^{2}+k$

- Method 1: completing the square. Use the formulas for fast multiplication.
- Method 2: find the vertex. Determine the coefficients a, b, c. Find the vertex x -and y -coordinates

$$
x_{v}=h=-\frac{b}{2 a} . \quad y_{v}=k=y\left(x_{v}\right)=a x_{v}^{2}+b x_{v}+c
$$

Modified vertex form: rewrite the equation into separate $y-$ and $x-\operatorname{part} 4 \boldsymbol{p}(y-\boldsymbol{k})=(x-\boldsymbol{h})^{2}$
Distance from any point on the parabola to focus and directrix: $\boldsymbol{p}=\frac{1}{4 a}$
Vertex $V(h, k)$ Focus $F(h, k+\boldsymbol{p})$ directrix $y=k-\boldsymbol{p}$

NEW: Parabola is the set of all points in a plane that are equally distant away from a given point and a given line (see black dotted lines). This given point is called the focus (black dot) of the parabola and the line is called the directrix (green line).

- If the parabola is of the form $(x-h)^{2}=4 p(y-k)$, the vertex is $(h . k)$, the focus is $(h, k+p)$ and directrix is $y=k-p$.

2. Adding Graphs

Now that we know how to draw a lot of basic graphs and how to use transformations, we can draw more complicated graphs - that is, graphs that we get by adding two functions. For example, if we want to draw a graph of a function $y=x^{2}+\frac{1}{x}$

We can carefully examine two separate graphs of $y=x^{2}$ (blue) and $y=\frac{1}{x}$ (green), and then see what happens if one adds these two graphs (red) by adding their y -values for every x .

Homework problems

1. Graph $x^{2}=4 y$. What is the focus, directrix and vertex of the parabola?
2. Sketch the following functions by first drawing the graph of each addend function and then adding the y -values for a few x -values. (Review your class notes)
a. $y=|x|+|x+1|$
b. $y=|x-1|+|x+1|$
c. $y=|x-1|-|x+1|$
d. $|y|=x$
3. Sketch the following functions by first drawing the graph of each addend function and then adding the y -values for a few x -values.
a. $y=x+\frac{1}{|x|}$
b. $y=\sqrt{x}+\frac{1}{x}$
c. $y=x-\frac{1}{x^{2}}$
4. Find all intersection points of the parabola $y=x^{2}$ and the circle with radius $\sqrt{6}$ and center at $(0,4)$.
