MATH 7: HOMEWORK 20

COORDINATE GEOMETRY: HYPERBOLAS AND PARABOLAS

Review of Quadratic Equations

Here is what we have learned so far about quadratic equations:

- A quadratic polynomial is an expression of the form $p(x)=a x^{2}+b x+c$.
- Roots of a quadratic polynomial are numbers such that $p(x)=0$. If x_{1}, x_{2} are roots, then $p(x)=a(x-$ $\left.x_{1}\right)\left(x-x_{2}\right)$.
- Vietá formulas: If x_{1}, x_{2} are roots of $x^{2}+b x+c$, then

$$
\begin{array}{r}
x_{1}+x_{2}=-b \\
x_{1} x_{2}=c
\end{array}
$$

- Completing the square: we can rewrite

$$
\begin{equation*}
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{D}{4 a}=a\left(\left(x+\frac{b}{2 a}\right)^{2}-\frac{D}{4 a^{2}}\right) \tag{1}
\end{equation*}
$$

where $D=b^{2}-4 a c$.
From this, one gets the quadratic formula: if $D<0$, there are no roots; if $D \geq 0$, then the roots are

$$
\begin{equation*}
x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a} \tag{2}
\end{equation*}
$$

- From formula (1), we see that:
- If $a>0$, then the smallest possible value of $p(x)$ is $-\frac{D}{4 a}$, which happens when $x=-\frac{b}{2 a}$. In this case the graph is a parabola with branches going up.
- If $a<0$, then the largest possible value of $p(x)$ is $-\frac{D}{4 a}$, which happens when $x=-\frac{b}{2 a}$. In this case the graph is a parabola with branches going down.

GRAPHS OF QUADRATIC FUNCTIONS

- We know how to draw the graph of $y=x^{2}$. It's a parabola.
- We know that the graph of $y=x^{2}+b$ can be obtained from the graph of $y=x^{2}$ by shifting up by b units (or down, if $b<0$)
- We know that the graph of $y=(x+a)^{2}$ can be obtained from the graph of $y=x^{2}$ by shifting left by a units (or right, if $a<0$).
- Based on the two fact above, we can draw a graph of any function of the type $y=(x+a)^{2}+b$.

We can transform any quadratic function $y=x^{2}+p x+q$ to $y=(x+a)^{2}+b$ by completing the square.

Properties of a Parabola

A parabola is the set of all points in a plane that are equally distant away from a given point and a given line (see black dotted lines).

This given point is called the focus (black dot) of the parabola and the line is called the directrix (green line).
If the parabola is of the form $(x-h)^{2}=4 p(y-k)$, the vertex is $(h . k)$, the focus is $(h, k+p)$ and directrix is $y=k-p$

1. For what values of a does the polynomial $x^{2}+a x+14$ has no roots? exactly one root? two roots?
2. Let x_{1}, x_{2} be the roots of the equation $x^{2}+3 x+4=0$. Without calculating the roots, find:
(a) $x_{1}^{2}+x_{2}^{2}$
(b) $\frac{1}{x_{1}^{2}}+\frac{1}{x_{2}^{2}}$
3. A circle with center $(3,5)$ intersects the y-axis at $(0,1)$.
(a) Find the radius of the circle
(b) Find the coordinates of the other point of intersection on the y-axis
(c) What are the coordinates of the intersection points of the circle with the x -axis?
4. Of all the rectangles with perimeter 4 , which one has the largest area?
[Hint: if sides of the rectangle are a and b, then the area is $A=a b$, and the perimeter is $2 a+2 b=4$. Thus, $b=2-a$, so one can write A using only $a \ldots]$
5. Prove that for any point P on the parabola $y=\frac{x^{2}}{4}+1$, the distance from P to the x-axis is equal to the distance from P to the point $(0,2)$.
6. Use completing the square method to draw the following graphs:
(a) $y=x^{2}-5 x+5$
(d) $y=-x^{2}+3 x-0.5$
(b) $y=x^{2}-4 x+2$
(e) $y=x^{2}+4 x-4$
(c) $y=x^{2}-x-1$
7. Graph $y=(\sqrt{x})^{2}$. Note $x \geq 0$
8. A triangle ABC has corners $A(-3,0), B(0,3)$ and $(3,0)$. The line $y=\frac{1}{3} x+1$ separates the triangle in 2 . What is the area of the piece lying below the line?
9. Sketch graphs of the following functions:
(a) $y=(x-1)^{2}+1$
(d) $y=\frac{x+2}{x+1}$
(b) $y=\frac{1}{x+2}+1$
(e) $y=\left|\frac{1}{x-1}+1\right|$
(c) $y=\frac{1}{2-x}$
