MATH 7: HOMEWORK 18

Coordinate geometry review. March 5, 2023

1. Coordinate geometry: Introduction.

In this section of the course, we are going to study coordinate geometry. The basic notion is the coordinate plane-a plane with a given fixed point, called the origin, as well as two perpendicular lines - axes, called the x-axis and the y-axis. x-axis is usually drawn horizontally, and y-axis - vertically. These two axes have a scale - "distance" from the origin.
The scales on the axes allow us to describe any point on the plane by its coordinates. To find coordinates of a point P , draw lines through P perpendicular to the x - and y-axes. These lines intersect the axes in points with coordinates $x o$ and $y o$. Then the point P has x -coordinate x_{0}, and y -coordinate y_{0}, and the notation for that is: $P\left(x_{0}, y_{0}\right)$.
The midpoint M of a segment AB with endpoints $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ has coordinates: $\quad M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

2. Lines

Given some relation which involves variables x, y (such as $x+2 y=0$ or $y=x^{2}+1$), we can plot on the coordinate plane all points $M(x, y)$ whose coordinates satisfy this equation. Of course, there will be infinitely many such points; however, they usually fill some smooth line or curve. This curve is called the graph of the given relation.

Every relation (equation) of the form: $\quad y=\boldsymbol{m} x+\boldsymbol{b}$
where $\boldsymbol{m}, \boldsymbol{b}$ are some numbers, defines a straight line. The slope of this line is determined by m : as you move along the line, y changes m times as fast as x, so if you increase x by 1 , then y will increase by m. In other words, given two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ slope can be computed by dividing change of $\mathrm{y}: \Delta=\mathrm{y}_{2}-\mathrm{y}_{1}$ by the change of $\mathrm{x}: \Delta=x_{2}-x_{1}$:

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Two non-vertical lines are parallel if and only if they have the same slope.
In the equation $y=m x+b, b$ is a y-intercept, and determines where the line intersects the vertical axis (y-axis). The equation of the vertical line is $x=k$, and the equation of the horizontal line is $y=k$. Notice that in case of the vertical line, the slope is undefined.

Fig. 1

3. Distance between points. Circles.

The distance between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given by the following formula:

$$
d=\sqrt{\left(x_{2}-x_{2}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

This formula is a straightforward consequence of the Pythagoras' Theorem (Fig. 1).
The equation of the circle with the center $M\left(x_{0}, y_{0}\right)$ and radius r is:

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} .
$$

This equation means, that points (x, y) should be at distance \boldsymbol{r} from the given point $M\left(x_{0}, y_{0}\right)$.

Fig. 2

4. Graphs of functions

In general, the relation between x and y could be more complicated and could be given by some formula of the form $y=f(x)$, where f is some function of x (i.e., some formula which contains x). Then the set of all points whose coordinates satisfy this relation is called the graph of f.

Line. The graph of the function $y=m x+b$ is a straight line. The coefficient \boldsymbol{m} is called the slope.

$$
y=\frac{1}{2} x ; y=\frac{1}{2} x+2:
$$

$y=-x ; y=-x-2:$

$$
y=-\frac{1}{2} x ; y=-\frac{1}{2} x-3
$$

Absolute value of a line. $y=|x|$
Two perpendicular lines, $y=x$ for $x>0$ and $y=-x$ for $x<0$.

5. Function transformations

Having learned a number of basic graphs, we can produce new graphs, by doing certain transformations of the equations. Here are two of them.

Vertical translations: Adding constant c to the right-hand side of equation shifts the graph by c units up (if c is positive; if c is negative, it shifts by $|c|$ down.)

Horizontal translations: Adding constant \boldsymbol{c} to x shifts the graph by \boldsymbol{c} units left if \boldsymbol{c} is positive; if \boldsymbol{c} is negative, it shifts by \boldsymbol{c} right.

Homework problems

ALL GRAPHS/POINTS/FIGURES SHOULD BE DRAWN BY YOU - NOT PRINTED! USE QUADRILE PAPER!

Note: to graph - means use a few pairs of points to graph the line/curve of the function.
to sketch - produce a sketch which approximates main features of the function, using the equation of the function and other properties (e.g., use slope, intercept, shifts, vertex place ...)

1. A point B is 5 units above and 2 units to the left of point $A(7,5)$. What are the coordinates of point B ?
2. Find the coordinates of the midpoint of the segment $A B$, where $A=(3,11), B=(7,5)$.
3. Draw points $A(4,1), B(3,5), C(-1,4)$. If you did everything correctly, you would get 3 vertices of a square. What are the coordinates of the fourth vertex? What is the area of this square?
4. 3 points $(0,0),(1,3),(5,-2)$ are the three vertices of a parallelogram. What are the coordinates of the remaining vertex? (Hints: check the slopes of each line.)
5. Consider the triangle $\triangle A B C$ with the vertices $A(-2,-1), B(2,0), C(2,1)$. Find the coordinates of the midpoint of B and C. Find the length of the median (i.e., a median unites a vertex with the midpoint of the opposite side) from A in the triangle $\triangle A B C$.
6. What is the slope of a line whose equation is $y=2 x$? What is the slope of the line $y=m x$?
7. In this problem you will find equations that describe some lines.
a. What is the equation whose graph is the y-axis?
b. What is the equation of a line whose points all lie 5 units above the x-axis?
c. Is the graph of $y=x$ a line? Draw it.
d. Find the equation of a line that contains the points $(1,-1),(2,-2)$, and $(3,-3)$.
8. For each of the equations below, draw the graph, then draw the perpendicular line (going through the point $(0,0)$) and then write the equation of the perpendicular line
a. $y=3 x$
b. $y=-x$
c. $y=-\frac{1}{2} x$

Can you determine the general rule: if the slope of a line is k, what is the slope of the perpendicular line?
9. Find the equation of the line through $(1,1)$ with slope 2.
10. Find the equation of the line through points $(1,1)$ and $(3,7)$. [Hint: what is the slope?]
11. (a) Find k if $(1,9)$ is on the graph of $y-2 x=k$. Sketch the graph.
(b) Find k if $(1, k)$ is on the graph of $5 x+4 y-1=0$. Sketch the graph.

A line written in this form, $A x+B y+C=0$, is known as a standard form. When this form could be more useful than the slope - intercept form? Watch here.
12. Let $l 1$ be the graph of $y=x+1, l 2$ be the graph of $y=x-1, m 1$ be the graph of $y=-x+1$, and $m 2$ be the graph of $y=-x-1$. Graph them.
a. Find the intersection point of $l 1$ and $m 1$; Label this point A and write down its coordinates.
b. Find the intersection point of $l 2$ and $m 2$; Label this point B and write down its coordinates.
c. Find the midpoint of $A B$ and write down its coordinates.
d. Let C be the intersection point of $l 1$ with $m 2$, and D be the intersection point of $l 2$ with $m 1$. What kind of quadrilateral is $A B C D$?
e. Explain why $l 1$ and $l 2$ are parallel. What is the distance between them?
13. Find the intersection point of a line $y=x-3$ and a line $y=-2 x+6$ algebraically solving system equations. Then, sketch the graphs of these lines - did the coordinates of the intersecting point match your solution for x and y ?
14. Using the shape of the function $y=|x|$, sketch (do not graph) on paper the graphs of the following functions:
a. $y=|x|+1$
b. $y=|x+1|$
c. $y=|x-5|-3$

