MATH 10 ASSIGNMENT 26: TOPOLOGY MAY 7

Definition 1. Let X, Y be two subsets in \mathbb{R}^3 (or, more generally, any two metric spaces). We say that X, Y are topologically equivalent (homeomorphic) if there are continuous functions $f: X \to Y, g: Y \to X$ which are inverses of each other: $f \circ g = \operatorname{id}_Y, g \circ f = \operatorname{id}_X$ (where id_X is the identity map $X \to X$: $\operatorname{id}(x) = x$.)

- **1.** Show that the open segment (0,1) is topologically equivalent to the halfline $(1,\infty)$.
- **2.** Show that the open segment (0, 1) is topologically equivalent to the real line.
- **3.** Show that the circle $S^1 = \{(x, y) \mid x^2 + y^2 = 1\}$ is topologically equivalent to the square (i.e. the boundary of the square, consisting of four segments, not including the interior).
- 4. Show that the plane with one point removed is topologically equivalent to the cylinder $S^1 \times \mathbb{R}$ (where S^1 is the circle.)
- 5. Show that the plane with a ray $[0, \infty)$ (positive part of the real line) removed is topologically equivalent to the halfplane.
- **6.** Let us call a set X connected if any two points can be connected by a path: for any $x_0, x_1 \in X$ there exists a past γ in X, whose endpoints are x_0, x_1 , i.e. a continuous map $\gamma: [0,1] \to X$ such that $\gamma(0) = x_0, \gamma(1) = x_1$.

Show that the real line is connected, but the set $\mathbb{R} - \{0\}$ is not connected. Deduce from this that \mathbb{R} and $\mathbb{R} - \{0\}$ are not topologically equivalent.

- 7. Is the real line with one point removed topologically equivalent to the real line with two points removed?
- 8. Consider the sphere $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ and the torus T. Are they topologically equivalent? can you argue why?