MATH 10

ASSIGNMENT 24: EULER'S FUNCTION

APR 22, 2023

Summary of previous results

We will be using some basic results from number theory which we had discussed 2 years ago. Most important of them is the following:

Theorem. If two integers a, b, are relatively prime, then there exist $x, y \in \mathbb{Z}$ such that

$$
a x+b y=1
$$

Corollary: if a is relatively prime with a positive integer $n>1$, then a is invertible modulo n : there exists an integer x such that $a x \equiv 1 \bmod n$.

Using this, we have proved last time the following result:
Theorem 1. The set \mathbb{Z}_{n}^{\times}of all remainders modulo n relatively prime with n is a group with respect to multiplication.

The order of this group is denoted by $\varphi(n)$ and is called the Euler function:

$$
\varphi(n)=\text { number of remainders modulo } n \text { which are relatively prime to } n
$$

For example, if $n=p$ is prime, then $\mathbb{Z}_{p}^{\times}=\{1,2, \ldots, p-1\}$, so that $\varphi(p)=p-1$.
Combining this with the results about the order of an element, we got Euler's theorem:
Theorem 2. If a is relatively prime to n, then $a^{\varphi(n)} \equiv 1 \bmod n$. In particular, for prime p, we have $a^{p-1} \equiv 1 \bmod p$ for any a not divisible by p.

1. Use Euclid's algorithm to find x, y such that $211 x+103 y=1$.
2. Find the following inverses
(a) Inverse of 5 modulo 22
(b) Inverse of $10 \bmod 17$
(c) Inverse of 103 modulo 211
3. Prove that for a prime p, one has $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$. Compute $\varphi(128) ; \varphi(125)$.
4. Prove that if p, q are different primes, then $\varphi(p q)=(p-1)(q-1)$. Can you guess the general formula for $\varphi(n)$ if prime factorization of n is $n=p_{1}^{k_{1}} \ldots p_{m}^{k_{m}}$?
5. Compute $\varphi(10) ; \varphi(100) ; \varphi(72)$
6. Let p, q be two different primes, and let a be relatively prime to p, q. Sow that then $a^{d} \equiv a \bmod p q$ for any d which satisfeis $d \equiv 1 \bmod (p-1)(q-1)$. Is the same true without the assumption that a is not divisible by p, q ?
7. Compute the last digit of 2003^{280}
8. Compute the last digit of $7^{\left(7^{7}\right)}$
9. Consider the group \mathbb{Z}_{11}^{\times}. Does it have an element of order 10 ? Is the group cyclic (i.e., is it true that there is an element x such that $\left.\mathbb{Z}_{11}^{\times}=\left\{1, x, x^{2}, \ldots\right\}\right)$?
