MATH 10 ASSIGNMENT 24: EULER'S FUNCTION

APR 22, 2023

SUMMARY OF PREVIOUS RESULTS

We will be using some basic results from number theory which we had discussed 2 years ago. Most important of them is the following:

Theorem. If two integers a, b, are relatively prime, then there exist $x, y \in \mathbb{Z}$ such that

$$ax + by = 1$$

Corollary: if a is relatively prime with a positive integer n > 1, then a is invertible modulo n: there exists an integer x such that $ax \equiv 1 \mod n$.

Using this, we have proved last time the following result:

Theorem 1. The set \mathbb{Z}_n^{\times} of all remainders modulo *n* relatively prime with *n* is a group with respect to multiplication.

The order of this group is denoted by $\varphi(n)$ and is called the Euler function:

 $\varphi(n) =$ number of remainders modulo n which are relatively prime to n.

For example, if n = p is prime, then $\mathbb{Z}_p^{\times} = \{1, 2, \dots, p-1\}$, so that $\varphi(p) = p-1$.

Combining this with the results about the order of an element, we got Euler's theorem:

Theorem 2. If a is relatively prime to n, then $a^{\varphi(n)} \equiv 1 \mod n$. In particular, for prime p, we have $a^{p-1} \equiv 1 \mod p$ for any a not divisible by p.

- 1. Use Euclid's algorithm to find x, y such that 211x + 103y = 1.
- **2.** Find the following inverses
 - (a) Inverse of 5 modulo 22
 - (b) Inverse of 10 mod 17
 - (c) Inverse of 103 modulo 211
- **3.** Prove that for a prime p, one has $\varphi(p^k) = p^k p^{k-1}$. Compute $\varphi(128)$; $\varphi(125)$.
- **4.** Prove that if p, q are different primes, then $\varphi(pq) = (p-1)(q-1)$. Can you guess the general formula for $\varphi(n)$ if prime factorization of n is $n = p_1^{k_1} \dots p_m^{k_m}$?
- **5.** Compute $\varphi(10)$; $\varphi(100)$; $\varphi(72)$
- **6.** Let p, q be two different primes, and let a be relatively prime to p, q. Sow that then $a^d \equiv a \mod pq$ for any d which satisfies $d \equiv 1 \mod (p-1)(q-1)$. Is the same true without the assumption that a is not divisible by p, q?
- 7. Compute the last digit of 2003^{280}
- 8. Compute the last digit of $7^{(7^7)}$
- **9.** Consider the group \mathbb{Z}_{11}^{\times} . Does it have an element of order 10? Is the group cyclic (i.e., is it true that there is an element x such that $\mathbb{Z}_{11}^{\times} = \{1, x, x^2, \dots\}$)?