MATH 10

ASSIGNMENT 22: SUBROUPS

MAR 26, 2023

Definition. Let G be a group. A subgroup of G is a subset $H \subset G$ which is itslef a group, with the same operation as in G. In other words, H must be

1. closed under multiplication: if $h_{1}, h_{2} \in H$, then $h_{1} h_{2} \in H$
2. contain the group unit e
3. for any element $h \in H$, we have $h^{-1} \in H$.

Examples are given in problem 1 below.
The main result of today is Lagrange theorem:
Theorem. If G is a finite group, and H is a subgroup, then $|H|$ is a divisor of $|G|$, where $|G|$ is the number of elements in G (also called the order of G).

The proof of this theorem is given in problem 4 below.

1. Which of the following are subgroups?
(a) $G=\mathbb{Z}$ (with operation of addition), $H=5 \mathbb{Z}=$ multiples of 5 .
(b) $G=\mathbb{Z}$ (with operation of addition), $H=\{n=5 k+1\}$.
(c) $G=S_{n}$ - permutation group, $H=$ even permutations
(d) $G=S_{n}$ - permutation group, $H=$ odd permutations
(e) $G=$ all symmetries of regular n-gon, $H=$ all rotations of regular n-gon
2. Let \mathbb{Z}_{n} be the group of all remainders $\bmod n$, with operation of addition (it is commonly called the cyclic group of order n). Identify this group with the group of all rotations of regular n-gon.
3. Describe all subgroups of \mathbb{Z}_{n}
4. Let $H \subset G$ be a subgroup. For any element $g \in G$, define the subset

$$
[g]=g H=\{g h, h \in H\}
$$

Subsets of this form are called cosets. Note that two different elements can define the same coset.
(a) List all cosets in the case when $G=\mathbb{Z}, H=5 \mathbb{Z}$.
(b) Show that two elements x, x^{\prime} are in the same coset $g H$ iff $x^{\prime}=x h$ for some $h \in H$.
(c) Show that two cosets $g_{1} H, g_{2} H$ either coincide (if $g_{1}=g_{2} h$ for some $h \in H$) or do not intersect at all.
(d) Show that every coset has exactly $|H|$ elements.
(e) Deduce Lagrange theorem:

$$
|G|=|H| \cdot(\text { number of cosets) }
$$

5. In this problem, we consider the permutation group S_{n}, with $n \geq 5$
(a) Write (12)(34) as a product of cycles of length 3
(b) Show that every even permutation can be written as a product of cycles of length 3 .
*6. Consider the puzzle consisting of 23 numbered balls arranged in two intersecting circles, 12 balls in each, with one ball in common. You can rotate each of the circles by a multiple of 30°. The goal is to have all balls in a correct order. (See figure on next page.)

To solve this puzzle, let $x=(123456789101112), y=(121314151617181920212223)$ be two cycles of length 12 in S_{23}. The question is whether any permutation can be written as a product of these two (and their inverses). Can you answer this question? [Hint: the first step would be computing $\left.x y x^{-1} y^{-1}\right]$.

