Arrhenius concept – acids produce hydrogen ions (H⁺) in aqueous solutions, while bases produce hydroxide ions (OH⁻).

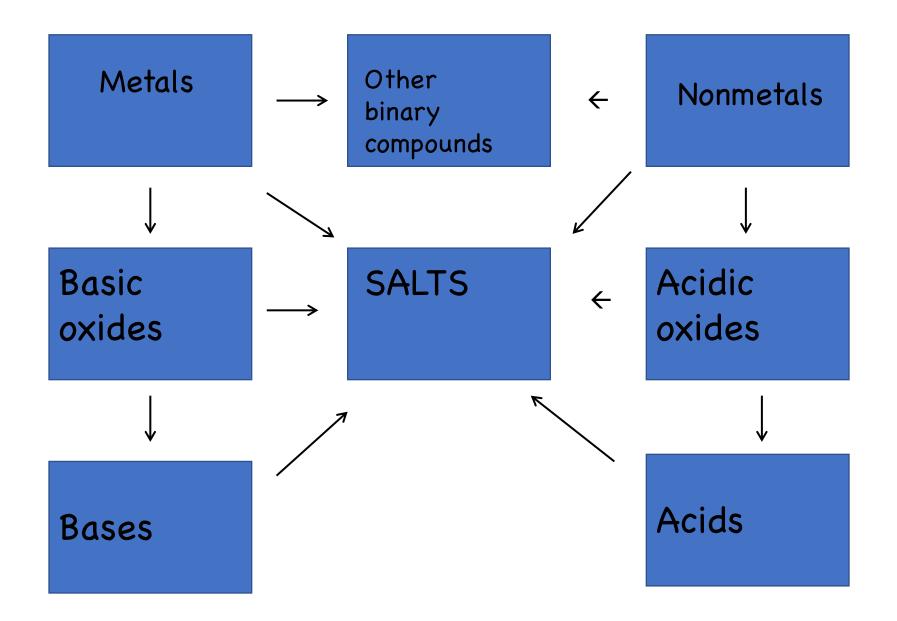
The Bronsted-Lowery definition – an acid is a proton donor; a base is a proton acceptor.

6 Strong Acids		6 Strong Bases	
HCIO ₄	perchloric acid	LiOH	lithium hydroxide
HCI	hydrochloric acid	NaOH	sodium hydroxide
HBr	hydrobromic acid	КОН	potassium hydroxide
ні	hydroiodic acid	Ca(OH) ₂	calcium hydroxide
HNO ₃	nitric acid	Sr(OH) ₂	strontium hydroxide
H ₂ SO ₄	sulfuric acid	Ba(OH) ₂	barium hydroxide

Alkalis are solutions obtained when a metal hydroxide (e.g. NaOH) dissolves in water or then basic oxides can react with water

 $Na_2O + H_2O \rightarrow 2NaOH$


This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>


https://youtu.be/i-rFsFwdkTU

https://youtu.be/dFYJ7a7-wlc

https://youtu.be/hW5lkiSy4lw

	Element	Oxidation Reaction
React vigorously with cold H ₂ O to form H ₂	Lithium Potassium Barium Calcium Sodium Magnesium Aluminum	Li \rightarrow Li ⁺ + e ⁻ K \rightarrow K ⁺ + e ⁻ Ba \rightarrow Ba ²⁺ + 2e ⁻ Ca \rightarrow Ca ²⁺ + 2e ⁻ Na \rightarrow Na ⁺ + e ⁻ Mg \rightarrow Mg ²⁺ + 2e ⁻ Al \rightarrow Al ³⁺ + 3e ⁻
React with steam to form H ₂	Manganese Zinc Chromium Iron	$\begin{array}{cccc} Mn & \rightarrow & Mn^{2+} + 2e^{-} \\ Zn & \rightarrow & Zn^{2+} + 2e^{-} \\ Cr & \rightarrow & Cr^{3+} + 3e^{-} \\ Fe & \rightarrow & Fe^{2+} + 2e^{-} \end{array}$
React with simple acids to form H ₂	Cadmium Cobalt Nickel Tin	$\begin{array}{cccc} Cd & \rightarrow & Cd^{2+} + 2e^{-} \\ Co & \rightarrow & Co^{2+} + 2e^{-} \\ Ni & \rightarrow & Ni^{2+} + 2e^{-} \\ Sn & \rightarrow & Sn^{2+} + 2e^{-} \\ Dh & & Dh^{2+} + 2e^{-} \end{array}$
Will not dissolve in simple acids	Lead Hydrogen Copper Silver Mercury Platinum Gold	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Increasing ease of oxidation