6 5	Strong Acids	6 Strong Bases		
HCIO ₄	perchloric acid	LiOH	lithium hydroxide	
HCI	hydrochloric acid	NaOH	sodium hydroxide	
HBr	hydrobromic acid	кон	potassium hydroxide	
HI	hydroiodic acid	Ca(OH) ₂	calcium hydroxide	
HNO ₃	nitric acid	Sr(OH) ₂	strontium hydroxide	
H ₂ SO ₄	sulfuric acid	Ba(OH) ₂	barium hydroxide	

strong acid:

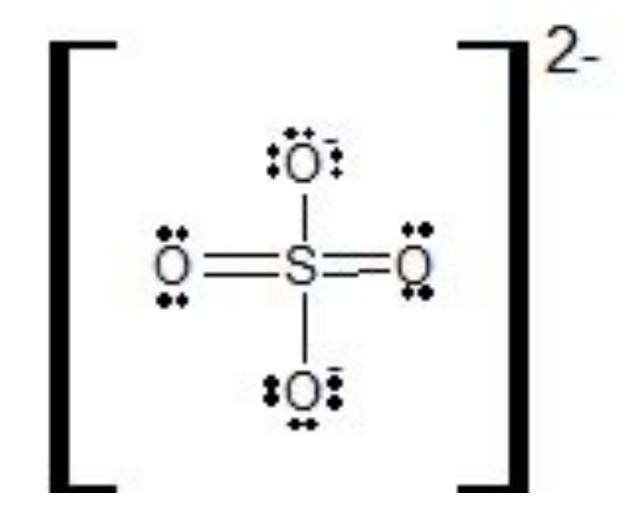
weak acid:

strong base:

NaOH +
$$H_2O$$
 \longrightarrow Na+ + OH-

weak base:

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

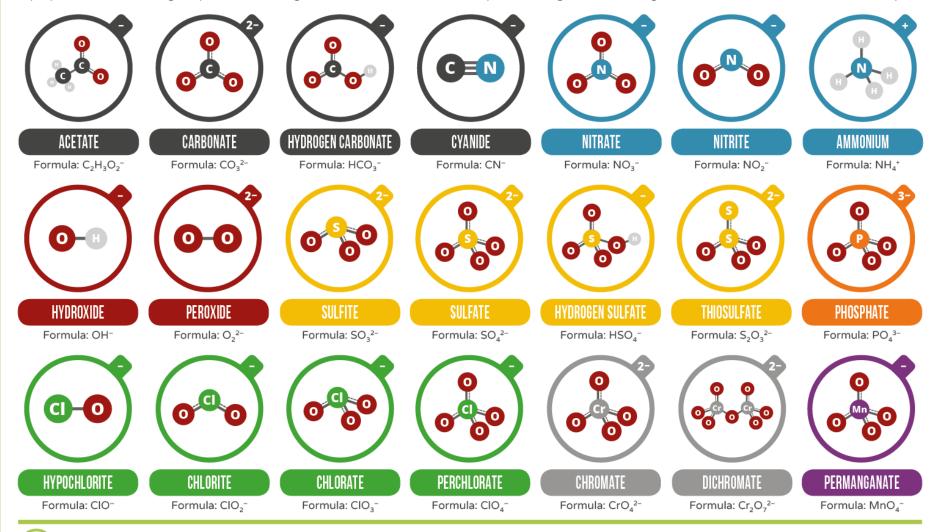

Reminder: ions, ionic bond, proton

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

Polyatomic ions

$$SO_4^{2-}NO_3^{-}$$

Sulfate ion.
When sulfuric acid
H₂SO₄ gives away
the proton, the
sulfate ion is formed.
For a dilute solutions
we can write the
following
(simplified) equation.

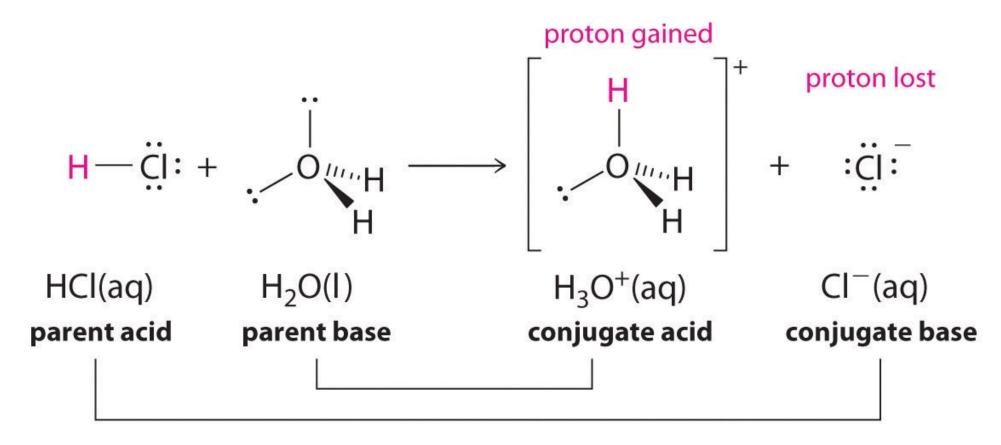


$$H_2SO_4 + H_2O \rightarrow H^+ + SO_4^{2-}$$

$$H^+ + H_2O \rightarrow H_3O^+$$
 (hydronium ion)

POLYATOMIC IONS: NAMES, FORMULAE & CHARGES

A polyatomic ion is a charged species consisting of two or more atoms covalently bonded together. Here's a guide to some of the most common examples!

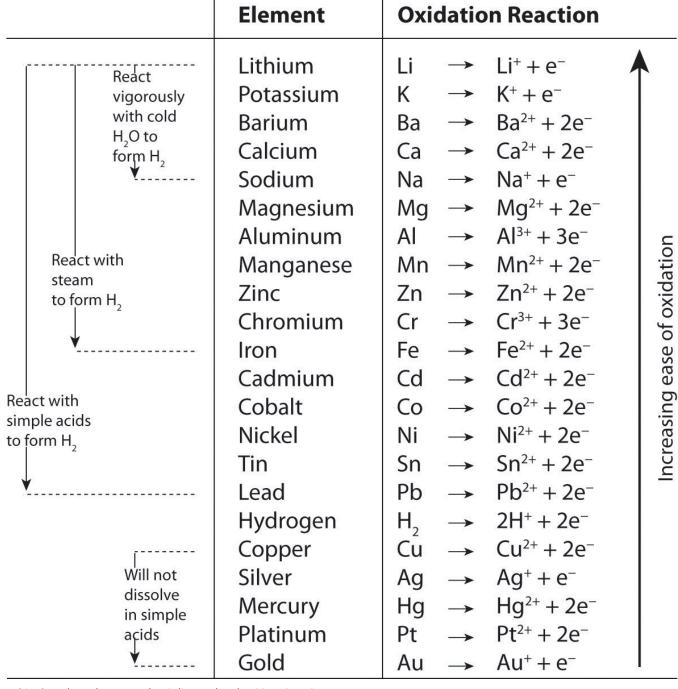


© COMPOUND INTEREST 2016 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives International 4.0 licence.

conjugate acid base pairs

Dissociation of water

$$H_2O \rightarrow H^+ + OH^-$$


In pure water the concentration of H⁺ and OH⁻ is equal at 10⁻⁷ mol/L, pH 7.

gaining proton

Some conjugate acid base pairs:

Acids, strongest to weakest	Bases, weakest to strongest
H ₂ SO ₄	HSO ₄ -
Н	- -
HBr	Br -
HCI	CI -
HNO ₃	NO ₃ -
H ₃ PO ₄	H ₂ PO ₄ -
NH ₄ ⁺	NH ₃
H ₂ O	OH-

https://youtu.be/OBdgeJFzSec

Solubility table

	Bromide Br	Carbonate CO ₃ ²⁻	Chloride CI ⁻	Chlorates CIO ₃	Hydroxide OH ⁻	Nitrate NO ₃	Oxide O ²⁻	Phosphate PO ₄ 3-	Sulfate SO ₄ ²⁻	Dichromate Cr ₂ O ₇ ²⁻
Aluminium Al ³⁺	S	×	s	s	1	S	- 1	1.	s	1
Ammonium NH ₄ +	S	s	s	s	s	s	x	S	s	s
Calcium Ca ²⁺	S	1	s	s	sS	S	sS	1	sS	- 1
Copper(II) Cu ²⁺	S	1	S	s	1	S	- 1	1	s	1
Iron(II) Fe ²⁺	S	1.	S	s	(1	S	1:	11:	s	- 1
Iron(III) Fe ³⁺	S	x	S	s	1	s	- 1	1	sS	1
Magnesium Mg ²⁺	S	1	s	s	1	s	- 1	i.	s	- 1
Potassium K*	S	s	S	s	s	S	s	s	s	S
Silver Ag ⁺	1	1	1	s	×	s	- 1	1.	sS	1
Sodium Na*	S	s	S	s	s	S	s	s	s	S
Zinc Zn ²⁺	s	1	s	s	1	s	1	I.	s	1
	Bromide Br	Carbonate CO ₃ ²⁻	Chloride CI ⁻	Chlorates CIO ₃ ⁻	Hydroxide OH ⁻	Nitrate NO ₃	Oxide O ²⁻	Phosphate PO ₄ 3-	Sulfate SO ₄ ²⁻	Dichromate Cr ₂ O ₇ ²⁻