HW24
pH scale (the measure of acidity, in other words the measure of proton concentration in solutions).

Questions

1.

Classify the following as oxides, acids, bases, salts: $\mathrm{MgO}, \mathrm{NaCl}, \mathrm{MgCl}_{2}, \mathrm{CO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HBr}, \mathrm{CaSO}_{4}$, $\mathrm{KOH}, \mathrm{Mg}(\mathrm{OH})_{2}$

2.

Arrange the following in order of increasing pH : $0.01 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ $1 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$
$0.1 \mathrm{~mol} / \mathrm{L} \mathrm{H}_{2} \mathrm{SO}_{4}$
3. We mix 10 ml of a 0.2 M (concentration $0.2 \mathrm{~mol} / \mathrm{L}$) solution of $\mathrm{K}_{3} \mathrm{PO}_{4}$ with 40 ml of a $0.1 \mathrm{M}(0.1 \mathrm{~mol} / \mathrm{L})$ solution of $\mathrm{K}_{2} \mathrm{SiO}_{3}$ and 50 ml of a $0.2 \mathrm{M}(0.2 \mathrm{~mol} / \mathrm{L})$ solution of KCl , then we add 400 ml of water. What is the molar concentration of potassium ion, K^{+} in the final solution?

$1^{\text {st }}$ step to solve the problem: we have the molar concentration of the potassium salts, we have to figure out the molar concentration of K^{+}from each compound.
Molar concentration of $\mathrm{K}_{3} \mathrm{PO}_{4}$ is $0.2 \mathrm{~mol} / \mathrm{L}$. One molecule of potassium phosphate has 3 atoms of K , so the molar concentration of \mathbf{K}^{+}in the 10 ml of a 0.2 M solution of potassium phosphate is $0.2 \times 3=0.6 \mathrm{~mol} / \mathrm{L}$.
Molar concentration of $\mathrm{K}_{2} \mathrm{SiO}_{3}$ is $0.1 \mathrm{~mol} / \mathrm{L}$. One molecule of potassium silicate has 2 atoms of K , so the molar concentration of \mathbf{K}^{+}in the 40 ml of a 0.1 M solution of potassium silicate is $0.1 \times 2=0.2 \mathrm{~mol} / \mathrm{L}$.
Molar concentration of KCl is $0.2 \mathrm{~mol} / \mathrm{L}$. One molecule of KCl has 1 atom of K , so the molar concentration of \mathbf{K}^{+}in the 50 ml of a 0.2 M solution of potassium chloride is $\mathbf{0 . 2} \mathbf{~ m o l} / \mathrm{L}$. Continue to solve the problem from here.

