HW24

pH scale (the measure of acidity, in other words the measure of proton concentration in solutions). H⁺Concentration pH

1st step to solve the problem: we have the molar

concentration of the potassium salts, we have to figure out the molar concentration of K^+ from each compound.

Molar concentration of K_3PO_4 is 0.2 mol/L. One molecule of potassium phosphate has 3 atoms of K, so the **molar concentration of K**⁺ in the 10 ml of a 0.2 M solution of potassium phosphate is 0.2x3=0.6 mol/L.

Molar concentration of K_2SiO_3 is 0.1 mol/L. One molecule of potassium silicate has 2 atoms of K, so the **molar concentration of K**⁺ in the 40 ml of a 0.1 M solution of potassium silicate is 0.1x2=0.2 mol/L.

Molar concentration of KCl is 0.2 mol/L. One molecule of KCl has 1 atom of K, so the **molar concentration of K**⁺ in the 50 ml of a 0.2 M solution of potassium chloride is **0.2 mol/L.**

Continue to solve the problem from here.